OSCILLATION CRITERIA OF COMPARISON TYPE FOR SECOND ORDER DIFFERENCE EQUATIONS

S.R. GRACE and H.A. EL-MORSHEDY*

Received March 23, 1998

Abstract. In this paper we investigate the oscillatory character of the second order nonlinear difference equations of the forms

 $\Delta(c_{n-1}\Delta(x_{n-1} + p_n x_{\sigma_n})) + q_n f(x_{\tau_n}) = 0, \qquad n = 1, 2, \dots$

n = 1, 2, .

and the corresponding nonhomogeneous equation

 $\Delta(c_{n-1}\Delta(x_{n-1} + p_n x_{\sigma_n})) + q_n f(x_{\tau_n}) = r_n, \qquad n = 1, 2, \dots$

via comparison with certain second order linear difference equations where the function f is not necessarily monotonic. The results of this paper are essentially new and can be extended to more general equations.

1. Introduction

In this article we are concerned with nonlinear difference equations of the forms

$$\Delta(c_{n-1}\Delta(x_{n-1}+p_nx_{\sigma_n})) + q_nf(x_{\tau_n}) = 0, \qquad n = 1, 2, \dots$$
(1.1)

ISSN 1425-6908 © Heldermann Verlag.

¹⁹⁹¹ Mathematics Subject Classification. 39A10.

Key words and phrases. Difference equations, forced equations, oscillation.

 $^{^{\}ast}$ On leave from Department of Mathematics, Damietta Faculty of Science, New Damietta 34517, Egypt