On the global attractivity and oscillations in a class of second-order difference equations from macroeconomics

Hassan A. El-Morshedy*
Department of Mathematics, Faculty of Science, Mansoura University, Damietta Branch, New Damietta 34517, Damietta, Egypt

(Received 12 November 2009; final version received 16 February 2010)
New global attractivity criteria are obtained for the second-order difference equation

$$
x_{n+1}=c x_{n}+f\left(x_{n}-x_{n-1}\right), \quad n=1,2, \ldots
$$

via a Lyapunov-like method. Some of these results are sharp and support recent related conjectures. Also, a necessary and sufficient condition for the oscillation of this equation is obtained using comparison with a second-order linear difference equation with positive coefficients.
Keywords: nonlinear difference equations; global attractivity; oscillation; macroeconomics models

AMS Subject Classification: 39A10; 39A11

1. Introduction

Consider the second-order difference equation

$$
\begin{equation*}
x_{n+1}=c x_{n}+f\left(x_{n}-x_{n-1}\right), \quad n=1,2, \ldots \tag{1.1}
\end{equation*}
$$

where $c \in[0,1), f: \mathcal{R} \rightarrow \mathcal{R}$ is a continuous real function and the initial values x_{0}, x_{1} are real numbers. Various particular cases of (1.1) have appeared in the mathematical models of macroeconomics. For prototype examples, the reader is referred to Samuelson [11], Hicks [7], and Puu [10]. Motivated by those examples, Sedaghat [12] proposed and investigated the general form (1.1). We mention here that for sigmoidal or tanh-like nonlinearities, equation (1.1) can also be regarded as the discrete analogue of the single delayed neuron model

$$
x^{\prime}(t)=-\alpha x(t)+f(x(t)-x(t-\tau))
$$

using (forward) Newton discretization scheme with step size equals τ. An account of the stability analysis and/or the oscillations of the above continuous neuronic equation and some related equations can be found in [2-5], while a higher-order discrete neuronic version was been investigated by Hamaya [6].

The global attractivity (stability), boundedness and/or oscillations of (1.1) were considered by [8,12-14]. Very recently, Li and Zhang [9] studied its bifurcation.

[^0]
[^0]: *Email: elmorshedy @yahoo.com

