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In this paper we are concerned with some new criteria for the oscillation and
nonoscillation of the second-order nonhomogeneous linear difference equations of

Ž . � 4 � 4 � 4the form D c D x q q x s f , n s 1, 2, . . . , where c , f , and q areny 1 ny1 n n n n n n
real sequences, c ) 0 for n G 0, and D x s x y x is the forward differencen n nq1 n
operator. The discrete analogs of some of the known results in the continuous case
are presented. Q 1997 Academic Press

1. INTRODUCTION

Recently there has been an increasing interest in studying the oscillatory
character of difference equations of various types. Among the concerned
literature there has been a considerable interest in the oscillatory proper-
ties of the second-order linear difference equations of the form

D c D x q q x s 0, n s 1, 2, . . . EŽ . Ž .ny1 ny1 n n 0

� 4where D is the forward difference operator, i.e., D x s x y x , c andn nq1 n n
� 4q are sequences of real numbers such that c ) 0 for n G 0. For details,n n

w xthe reader is referred to 1, 2, 4]6, 12 and the references cited therein.
However, less is known about the oscillatory properties of the forced
equation

D c D x q q x s f , n s 1, 2, . . . EŽ . Ž .ny1 ny1 n n n
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� 4where f is a sequence of real numbers. Therefore, the purpose of then
Ž .present paper is to investigate the oscillatory behavior of Eq. E .

Ž . � 4By a solution of Eq. E we mean an eventually nontrivial sequence un
Ž . � 4 Ž .satisfying Eq. E for n s 0, 1, 2, . . . . As usual, a solution u of Eq. E isn

said to be nonoscillatory if there exists N G 0 such that u u ) 0 for alln nq1
n G N and is oscillatory otherwise. An equation is called oscillatory if all
of its solutions are oscillatory.

Ž .It is known that the oscillation of Eq. E is equivalent to the oscillation0
Ž w x. Ž .of one of its solutions see 3, p. 153 . However. Eq. E can have both

oscillatory and nonoscillatory solutions. For example, the equation

D2 u q 4u s 1, n s 1, 2, . . .ny1 n

� Ž .n 4has a nonoscillatory solution 1r4 q y1 r8 and a oscillatory solution
� Ž .n41r4 q n y1 . For the general theory of the difference equations, the

w xreader is referred to 3, 7, 10 .

2. OSCILLATION AND NONOSCILLATION CRITERIA

Ž .In this section, the oscillatory properties of Eq. E are studied via the
� 4 Ž .transformation u s x y , where x is a solution of Eq. E and x / 0,n n n n 0 n

n G N for some N G 0. This transformation is the discrete analog of the
Ž . Ž . Ž . w xcontinuous version u t s x t y t , which has been employed by 14 for

Ž .study of the continuous analog of Eq. E , i.e., the differential equation
XXc t u t q q t u t s f t , 9 s drdt ,Ž . Ž . Ž . Ž . Ž . Ž .Ž .

w x Ž .and by 8, 11 for the continuous analog of Eq. E , i.e.,0

XXc t u t q q t u t s 0.Ž . Ž . Ž . Ž .Ž .
� 4 � 4 Ž .LEMMA 2.1. Suppose that u and x are solutions of Eq. E and Eq.n n

Ž .E , respectï ely, such that x / 0, n G N for some N G 0. Define y by0 n n
u s x y , n G N. Thenn n n

D c x x D y s x f , n G N. 2.1Ž . Ž .ny1 ny1 n ny1 n n

Proof. Since u s x y , thenn n n

Du s x D y q y D x ,ny1 ny1 ny1 n ny1

and

D c Du s D c x D y q D c y D xŽ . Ž . Ž .ny1 ny1 ny1 ny1 ny1 ny1 n ny1

s D c x D y q y D c D x q c D y D x .Ž . Ž .ny1 ny1 ny1 n ny1 ny1 n n n
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Ž .Using Eq. E , we obtain

f s D c x D y q y D c D x q c D y D x q q x yŽ . Ž .n ny1 ny1 ny1 n ny1 ny1 n n n n n n

s D c x D y q c D y D x q y D c D x q q x ,Ž . Ž .ny1 ny1 ny1 n n n n ny1 ny1 n n

n G N ,
� 4 Ž .but x is a solution of Eq. E ; therefore we haven 0

f s D c x D y q c D y D xŽ .n ny1 ny1 ny1 n n n

s yc x D y q c x D y , n G N. 2.2Ž .ny1 ny1 ny1 n nq1 n

Ž .Multiplying both sides of 2.2 by x , we getn

x f s c x x D y y c x x D yn n n n nq1 n ny1 ny1 n ny1

s D c x x D y , n G N.Ž .ny1 ny1 n ny1

The proof is complete.

� 4THEOREM 2.1. If there exists an e¨entually positï e solution x of Eq.n
Ž .E such that for sufficiently large integer N G 0 and for some M ) 0, the0
conditions

n n

lim inf x f s y` and lim sup x f s `, 2.3Ž .Ý Ýk k k k
nª` nª`ksN ksN

n k n1 1
x f F M , n G N , 2.4Ž .Ý Ý Ýi ic x x c x xk k kq1 k k kq1ksN isN ksN

and
` 1

s `, 2.5Ž .Ý c x xk k kq1ksN

Ž .are satisfied, then Eq. E is oscillatory.

� 4Proof. For the sake of contradiction, we assume that u is a nonoscil-n
Ž .latory solution of Eq. E . Without any loss of generality, one can assume

� 4that u is eventually positive, since otherwise the substitution ¨ s yun n n
Ž .transforms Eq. E into a similar equation, with f replaced by yf ,n n

furthermore, the resulting equation preserves the assumptions of the
theorem. Hence we talk again about an eventually positive solution.

Now let N be a sufficiently large integer so that the assumptions of the
theorem hold, u ) 0 and x / 0 for n G N. As in Lemma 2.1, then n

� 4 Ž . Ž .sequence y defined by u s x y is a solution of 2.1 . Summing 2.1n n n n
from N to n, we get

n

x f s c x x D y y c x x D y . 2.6Ž .Ý k k n n nq1 n Ny1 Ny1 N Ny1
ksN
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Ž .By 2.3 , we have

lim inf c x x D y s y`.n n nq1 n
nª`

Thus one can choose N so large that

c x x D y - y2 M . 2.7Ž .Ny1 Ny1 N Ny1

Ž .Dividing both sides of 2.6 by c x x and summing from N to n, wen n nq1
obtain

n n k1 1
y s y q c x x D y q x fÝ Ý Ýnq1 N Ny1 Ny1 N Ny1 i ic x x c x xk k kq1 k k kq1ksN ksN isN

n n k1 1
- y y 2 M q x f , n G N.Ý Ý ÝN i ic x x c x xk k kq1 k k kq1ksN ksN isN

2.8Ž .
Ž .From 2.4 , we obtain

n 1
y - y y M .Ýn N c x xk k kq1ksN

Ž .By 2.5 , y is eventually negative, which implies that u is eventuallyn n
negative. Then we arrive at a contradiction of the positivity assumption of
u . This completes the proof.n

� 4 Ž .THEOREM 2.2. If there exists a positï e solution x of Eq. E and ann 0
integer N G 0 such that

n k1
lim inf x f s y`, 2.9Ž .Ý Ý i ic x xnª` k k kq1ksN isN

n k1
lim sup x f s `, 2.10Ž .Ý Ý i ic x xnª` k k kq1ksN isN

and
` 1

- `, 2.11Ž .Ý c x xk k kq1ksN

Ž .then Eq. E is oscillatory.

� 4 Ž .Proof. Suppose that u is a nonoscillatory solution of Eq. E . As inn
the proof of Theorem 2.1, one can assume that u ) 0 for n G N andn

Ž .obtain 2.8 , i.e.,
n n k1 1

y s y q c x x D y q x f ,Ý Ý Ýnq1 N Ny1 Ny1 N Ny1 i ic x x c x xk k kq1 k k kq1ksN ksN isN
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Ž . Ž .which, in view of the conditions 2.9 and 2.11 , implies that lim inf ynª` n
s y`. Thus we obtain a contradiction of the positivity of u . Thisn
apparent contradiction completes the proof.

EXAMPLE 2.1. Consider the difference equation

D2 u y u s f , n G 1. 2.12Ž .ny1 n n

The corresponding homogeneous equation, D2 x y x s 0, has a posi-ny1 n
n 'Ž .tive solution x s a , a s 3 q 5 r2, n s 0, 1, 2, . . . . Ifn

nq1 nq1 ny1f s y1 a 2n q 1 q a 2n y 1 ,Ž . Ž . Ž .n

then all of the assumptions of Theorem 2.2 are satisfied, and hence Eq.
Ž . Ž .n n2.12 is oscillatory. One such solution is u s y1 a .n

� 4 � 4 Ž . Ž .Suppose that u and x are any solutions of Eq. E and Eq. E ,n n 0
respectively. Define

W x , u n s c x u y u x .Ž . Ž . Ž .n nq1 n nq1 n

w x Ž .Ž .Theorem 6 in 13 states that if W x, u n is eventually of one sign, then
Ž . Ž .Eq. E is oscillatory if and only if Eq. E is oscillatory. Next, under the0

transformation u s x y , we observe thatn n n

W x , u n s yc x x D y ,Ž . Ž . n n nq1 n

Ž . Ž . Ž . Ž .and in view of the condition 2.3 or 2.9]2.11 , the equality 2.6 or 2.8
� 4 Ž .Ž .implies that c x x D y is oscillatory, i.e., W x, u n oscillates. There-n n nq1 n

w x w xfore, 13, Th. 6 is not applicable in this case. In fact, Theorem 6 of 13
Ž . Ž .preserves the oscillatory properties of Eq. E and Eq. E , whereas our0

Ž .Theorems 2.1 and 2.2 generate oscillation in Eq. E .
w xNext we give a result of the type as Theorem 6 of 13 . We first define a

class K of real sequences as follows
n 1

� 4K s z : y` s lim inf Ýn½ c z znª` k k kq1ksN

n 1
- lim sup s `, z / 0 for n G N ) 0Ý n 5c z znª` k k kq1ksN

� 4 Ž . � 4THEOREM 2.3. Suppose that u is any solution of Eq. E and x is an n
Ž . � 4solution of Eq. E such that x / 0, n G N for some N ) 0, and x f K.0 n n

Suppose further that
` k1

x f s `. 2.13Ž .Ý Ý i ic x xk k kq1ksN isN

� 4 � 4Then u is oscillatory if and only if x is oscillatory.n n
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Ž .Ž .Proof. Suppose that y s u rx , n G N. Then W x, u n sn n n
Ž .Ž .yc x x D y . It will be convenient to assume that W x, u n is oscil-n n nq1 n

latory, since otherwise we get the conclusion of the theorem using The-
w x � 4orem 6 of 13 . Thus c x x D y is oscillatory. Consequently, one cann n nq1 n

choose N so large that the assumptions of the theorem hold and
Ž .c x x D y G 0 F 0 .Ny1 Ny1 N Ny1

Now since x / 0 for n G N, then proceeding as in the proof ofn
Ž .Theorem 2.1, we get 2.8 . On the other hand, the assumption that

� 4x f K implies that the sumn

n 1
,Ý c x xk k kq1ksN

is either bounded below or bounded above. We consider the first case and
the latter goes the same way. Thus there exists a real constant D G 0 such
that

n 1
G yD , for all n G N.Ý c x xk k kq1ksN

Ž .Choose N so large that c x x D y G 0; then 2.8 impliesNy1 Ny1 N Ny1

n k1
y G y y D c x x D y q x f , n G N.Ž . Ý Ýn N Ny1 Ny1 N Ny1 i ic x xk k kq1ksN isN

Ž .In view of 2.13 , the above inequality implies that y ª ` as n ª `. Thusn
y s u rx is eventually positive, which implies that u has the same signn n n n

� 4 � 4as x . This is equivalent to saying that u is oscillatory if and only if xn n n
is oscillatory. Thus the proof is complete.

Remark 2.1.
1. If c ' 1, Theorem 2.1 and Theorem 2.2 are the discrete analogs ofn

w xTheorem 1 and Theorem 2 of 14 , respectively.
Ž .2. We note that if Eq. E is nonoscillatory, there exist solutions that0

Ž . Ž . Ž w x. Ž .satisfy 2.5 and 2.11 see 12 . Now suppose that Eq. E is nonoscilla-0
� 4 Ž . Ž .tory and x is a positive solution of Eq. E satisfying 2.5 . It is easy ton 0
Ž . � 4see that 2.13 is satisfied for any eventually positive sequence f .n

Ž .Therefore, Theorem 2.3 implies that all of the solutions of Eq. E are
w xnonoscillatory, which is the same conclusion as Corollary 4 of 13 .

3. EXPLICIT CRITERIA

In this section we give some criteria for the oscillation and nonoscilla-
Ž . � 4 � 4 � 4tion of Eq. E that depend only on the coefficients c , f andror q .n n n

q � 4 yWe will make use of the following notations: h s max h , 0 and h sn n n
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� 4min h , 0 for n s 1, 2, . . . . The following result is derived from Theoremn
2.3.

Ž .THEOREM 3.1. Suppose that the solutions of Eq. E are bounded and0
nonoscillatory, and

` `
q yf rc s ` and f ) y`, 3.1Ž .Ý Ýk k k

or
` `

y qf rc s y` and f - `. 3.2Ž .Ý Ýk k k

Ž .Then all of the solutions of Eq. E are nonoscillatory.

Ž . � 4Proof. First, assume that condition 3.1 holds and that x is ann
Ž . Ž .eventually positive solution of Eq. E satisfying 2.11 , i.e.,0

` 1
- `.Ý c x xk kq1 kksN

Suppose also that the positive constants N, M, and l are such that
0 - x - M and Ýn fy G yl for all n G N. Then we getn ksN k

n k n k k1 1
q yx f s x f q x fÝ Ý Ý Ý Ýi i i i i iž /c x x c x xk k kq1 k k kq1ksN isN ksN isN isN

n n k1 1
q yG f q M fÝ Ý Ýk ic x c x xk kq1 k k kq1ksN ksN isN

n q n1 f 1kG y lM .Ý ÝM c c x xk k k kq1isN ksN

Taking the limit as n ª ` of both sides of the above inequality and using
Ž .3.1 , we obtain

` k1
x f s `.Ý Ý i ic x xk k kq1ksN isN

Ž .Thus condition 2.13 is satisfied. Applying Theorem 2.3, we get that any
Ž .solution of Eq. E is nonoscillatory.

Ž . � 4 Ž .Next suppose that condition 3.2 holds. If u is a solution of Eq. E , itn
� 4is clear that yu is a solution of the equationn

D c Du q q u s g n s 1, 2, . . . , 3.3Ž . Ž .ny1 ny1 n n n

where g s yf for all n. But,n n

` `
q yg rc s y f rc s `,Ý Ýk k k k
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and
` `

y qg s y f ) y`,Ý Ýk k
ksN ksN

Ž .Then in view of the first part of this theorem, any solution of 3.3 is
Ž .nonoscillatory. Consequently, any solution of Eq. E is nonoscillatory.

This completes the proof.

Using any known nonoscillation and boundedness criteria of the solu-
Ž .tions of Eq. E and by the use of Theorem 3.1, we can derive many0

Ž .explicit nonoscillation criteria regarding the solutions of Eq. E . Next, we
give a result of this type. We need the following result, which is a simple

w x w xcombination of Theorem 6 in 6 and Theorem 3 in 12 . The result is given
by our notation, and the proof is omitted.

THEOREM 3.2. If for all large n we ha¨e

c q c ) q G 0 ¦n ny1 n
Ž .and 3.4¥2c 1n F ,§c q c y q c q c y q 4Ž . Ž .n ny1 n n nq1 nq1

and
` 1

- `, 3.5Ž .Ý ck

Ž .then all solutions of Eq. E are bounded and nonoscillatory.0

Now, by Theorems 3.1 and 3.2, we obtain the following result.

Ž . Ž Ž .. Ž . Ž .COROLLARY 3.1. Suppose that conditions 3.1 or 3.2 , 3.4 , and 3.5
Ž .are satisfied. Then all the solutions of Eq. E are nonoscillatory.

The following example is illustrative.

EXAMPLE 3.1. Consider the following equation:

D 6ny1 Du q 26ny1u s f , n s 1, 2, . . . , 3.6Ž .Ž .ny1 n n

where
n n nnf s n6 1 q y1 r2 q 2r3 y1 y 1 r2 for n s 1, 2, . . .Ž . Ž . Ž .Ž . Ž .n

Ž . Ž .It is easy to see that conditions 3.4 and 3.5 are satisfied; also,

0 if n is evenyf s nn ½ y 2r3 if n is oddŽ .
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and

n6n if n is evenqf sn ½ 0 if n is odd.

Ž . Ž .Then 3.1 and 3.2 are also satisfied. Hence, by Corollary 3.1, all solutions
Ž .of 3.6 are nonoscillatory. In fact,

n n
u s y1 ynr4 q 5r48 y 9r44 y1r9Ž . Ž . Ž .n

ny 9r14 1r9 q 3nr2 y 15r4Ž . Ž .

is one such solution.

w xIn 13 and the preceding results of the present paper, it is observed that
� 4the conditions posed for f either preserve the oscillatory properties ofn

Ž . Ž . Ž .Eq. E in Eq. E or yield oscillation in Eq. E . In either case and for0
Žpractical purposes, we need first to know not only the oscillatory nonoscil-

. Ž .latory character of Eq. E , but also some information about the asymp-0
totic behavior of its solutions. So it would be better to find criteria

Ž .independent of the solutions of Eq. E . Next we include two results of0
this type.

� 4THEOREM 3.3. Let n be a sequence of positï e integers such thatk
n ª ` as k ª `. Ifk

c q c y q F 0 for all large k , 3.7Ž .n n y1 nk k k

and

f is oscillatory, 3.8� 4 Ž .nk

Ž .then all solutions of Eq. E are oscillatory.

� 4Proof. Suppose, for the sake of contradiction, that u is a nonoscilla-n
Ž .tory solution of Eq. E . As stated in the proof of Theorem 2.1, we can

� 4assume that u is eventually positive. Hence one can choose a sufficientlyn
Ž .large integer N such that u ) 0 for n G N, and 3.7 is satisfied for alln

w x Ž .n G N. As in 13 , Eq. E can be written in the following equivalent form:k

c u q c u s c q c y q u q f , n G N.Ž .n nq1 ny1 ny1 n ny1 n n n

Hence

0 - c u q c u s c q c y q u q f , n G N.Ž .n n q1 n y1 n y1 n n y1 n n n kk k k k k k k k k
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Ž .Using 3.7 ,

0 - c u q c u F f for all n G N.n n q1 n y1 n y1 n kk k k k k

Ž .Thus, f ) 0 for all n G N, which contradicts 3.8 . This completes then kk

proof.

EXAMPLE 3.2. Consider the equation

n2D u q 2u s 2 y1 q 1, n s 1, 2, . . .Ž .ny1 n

� 4Since c q c y q s 0 for all n and f is oscillatory. Then by Theo-n nq1 n n
rem 3.3, all solutions of the above equation oscillate. One of these

Ž .nsolutions is u s 1r2 y y1 .n

Before stating the last result in this paper, it will be convenient to define
the following notations for all n G N ) 0:

n n k
y1 y1 y1C s c , F s C c f .Ý Ý Ýn k n n k i

ksN ksN isN

THEOREM 3.4. Suppose that

q G 0 e¨entually, 3.9Ž .n

lim sup F s `, 3.10Ž .n
nª`

and

lim inf F s y`, 3.11Ž .n
nª`

Ž .Then Eq. E is oscillatory.

Ž .Proof. Suppose that Eq. E is nonoscillatory; then it has solutions that
� 4are either eventually positive or eventually negative. Assume that u isn

one such solution; as in the proof of Theorem 2.1, one can assume that
� 4u is eventually positive. Choose an integer N ) 0 so large that u ) 0n n

Ž .and q G 0 for all n G N. Now, summing Eq. E from N to n and dividingn
the result by c , we getn

n n1 1 1
Du y c Du q q u s f . 3.12Ž . Ž .Ý Ýn Ny1 Ny1 i i ic c cn n nisN isN
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Ž .Summing 3.12 from N to n, we obtain

n k n k
y1 y1u y u y C c Du q c q u s c f .Ž . Ý Ý Ý Ýnq1 N n Ny1 Ny1 k i i k i

ksN isN ksN isN

Dividing both sides of the above inequality by C , we haven

n ku u 1nq1 N y1y y c Du q c q u s F , n G N.Ý ÝNy1 Ny1 k i i nC C Cn n n ksN isN

3.13Ž .

Ž .Using the positivity of u for n G N, 3.13 implies thatn

uNy y c Du F F , n G N. 3.14Ž .Ny1 Ny1 nCn

Ž .In view of the fact that C ) 0 for n G N, 3.14 implies that F isn n
Ž .bounded below, which contradicts 3.11 . This completes the proof.

EXAMPLE 3.3. All solutions of the equation
n2 2 2w xD u q n u s y1 4 y n , n s 1, 2, . . . 3.15Ž . Ž .ny1 n

Ž .nare oscillatory by Theorem 3.4; one such solution is u s y1 .n

Remark 3.1.
w x1. In Theorem 3.3, if we let f ' 0, then Lemma 3 in 12 and Theoremn

Ž3.3 are the same. We also observe that the results of this paper except for
. Ž .Theorem 3.3 are not applicable to Eq. E .0

2. It is interesting to obtain a criterion similar to Theorem 3.4 when
q - 0 for all k, where n is defined as in Theorem 3.3.n kk

REFERENCES

1. S. Chen and L. H. Erbe, Riccati Techniques and discrete oscillations, J. Math. Anal.
Ž .Appl. 142 1989 , 468]487.

2. S. S. Cheng, T. C. Yan, and H. J. Li, Oscillation criteria for second order difference
Ž .equations, Funkcial Ek¨ac 34 1991 , 223]239.

3. T. Fort, ‘‘Finite Differences and Difference Equations in the Real Domain,’’ Oxford
Univ. Press, London, 1948.

4. S. R. Grace, A. A. Abadeer, and H. A. El-Morshedy, On the oscillation of certain second
Ž .order difference equations, Comm. Appl. Anal. to appear .

5. J. W. Hooker, M. K. Kwong, and W. Patula, Oscillatory second order linear difference
Ž .equations, SIAM J. Math. Anal. 18 1987 , 54]63.

6. J. W. Hooker and W. Patula, Riccati type transformations for second order linear
Ž .difference equations, J. Math. Anal. Appl. 82 1981 , 451]462.



OSCILLATION AND NONOSCILLATION THEOREMS 625

7. W. G. Kelly and A. C. Peterson, ‘‘Difference Equations: An Introduction with Applica-
tions,’’ Academic Press, Boston, 1991.

8. V. Komkov, A technique for the detection of oscillation of second order ordinary
Ž .differential equations, Pacific J. Math. 42 1972 , 105]115.

9. M. K. Kwong, J. W. Hooker, and W. Patula, Riccati type transformations for second
Ž .order linear difference equations, II, J. Math. Anal. Appl. 107 1985 , 182]196.

10. V. Lakshmikantham and D. Trigiante, ‘‘Theory of Difference Equations, Numerical
Methods and Applications,’’ Academic Press, New York, 1988.

11. J. Macki, Application of change of variables in the qualitative theory of second order
Ž .linear differential equations, SIAM Re¨ . 18 1976 , 269]274.

12. W. Patula, Growth and oscillation properties of second order linear difference equations,
Ž .SIAM J. Math. Anal. 10 1979 , 55]61.

13. W. Patula, Growth, oscillation and comparison theorems for second order linear differ-
Ž .ence equations, SIAM J. Math. Anal. 10 1979 , 1272]1279.

14. S. M. Rankin, Oscillation results for a nonhomogeneous equation, Pacific J. Math. 80
Ž .1979 , 237]243.


