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Quasi-Hadamard product of some uniformly analytic and
p-valent functions with negative coefficients

NICOLETA BREAZ and RABHA M. EL-ASHWAH

ABSTRACT. In this paper we study the quasi-Hadamard product between some p-valent and uniformly ana-
lytic functions with negative coefficients defined in connection with uniformly starlikeness and uniformly con-
vexity.

1. INTRODUCTION

Let T0(p) denote the class of functions of the form:

f(z) = apz
p −

∞∑
n=1

ap+nz
p+n, (ap+n ≥ 0; p ∈ N = {1, 2, ...}, ap > 0)

which are analytic and p-valent in the open unit disc U = {z : z ∈ C and |z| < 1}. By T (p)
we will denote the class T0(p) with ap = 1.

Also let S(p, q, α) and C(p, q, α) denote two subclasses of T (p) defined as:

S(p, q, α) =

{
f(z) ∈ T (p) : Re

{
zf (1+q)(z)

f (q)(z)

}
> α ,

(z ∈ U ; 0 ≤ α < p− q; p ∈ N; p > q; q ∈ N0 = N ∪ {0})
}

and

C(p, q, α) =

{
f(z) ∈ T (p) : Re

{
1 +

zf (2+q)(z)

f (1+q)(z)

}
> α ,

(z ∈ U ; 0 ≤ α < p− q; p ∈ N; p > q; q ∈ N0)
}

These classes were investigated by Chen et al. in [2]. We can notice that:
(i) S(p, 0, α) = T ∗(p, α), is the class of p-valently starlike functions of order α, 0 ≤ α < p;
(ii) C(p,0,α) = C(p, α), is the class of p-valently convex functions of order α, 0 ≤ α < p.
These last particular classes, T ∗(p, α) andC(p, α), were studied by Owa in [7], Sălăgean

et al. in [8] and Sekine in [9].
For the classes S(p, q, α) and C(p, q, α), Chen et al. obtained the following results:

Lemma 1.1. [2] A function f(z) ∈ T (p) is in the class S(p, q, α) if and only if
∞∑

n=1

(n+ p− q − α)δ(n+ p, q)ap+n ≤ (p− q − α)δ(p, q)
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(0 ≤ α < p− q; p ∈ N; p > q; q ∈ N0) ,

where

δ(p, q) =
p!

(p− q)!
=

{
p(p− 1)...(p− q + 1) (q 6= 0)
1 (q = 0) .

Lemma 1.2. [2] A function f(z) ∈ T (p) is in the class C(p, q, α) if and only if
∞∑

n=1

(
n+ p− q
p− q

)
(n+ p− q − α)δ(n+ p, q)ap+n ≤ (p− q − α)δ(p, q) .

(0 ≤ α < p− q; p ∈ N; p > q; q ∈ N0) ,

where

δ(p, q) =
p!

(p− q)!
=

{
p(p− 1)...(p− q + 1) (q 6= 0)
1 (q = 0) .

In order to present the main results of this paper, we introduce two new classes of
p-valent functions with negative coefficients defined by some conditions related to uni-
formly starlikeness and uniformly convexity, in the following manner:

β − UST0(p, q, α) =
{
f ∈ T0(p) : Re

{
zf (1+q)(z)

f (q)(z)

}
≥ β

∣∣∣∣zf (1+q)(z)

f (q)(z)
− 1

∣∣∣∣+ α

}
,

(z ∈ U ; 0 ≤ α < p− q; p ∈ N; p > q; q ∈ N0 = N ∪ {0}, β ≥ 0
)

and

β − UCV0(p, q, α) =
{
f ∈ T0(p) : Re

{
1 +

zf (2+q)(z)

f (1+q)(z)

}
≥ β

∣∣∣∣zf (2+q)(z)

f (1+q)(z)

∣∣∣∣+ α

}
,

(z ∈ U ; 0 ≤ α < p− q; p ∈ N; p > q; q ∈ N0 = N ∪ {0}, β ≥ 0
)
.

Remark 1.1. i) For β = 0 we have β −UST0(p, q, α) = S0(p, q, α) and β −UCV0(p, q, α) =
C0(p, q, α), analogous to S(p, q, α) and C(p, q, α), but defined for functions from T0(p), the
classes considered and investigated by El Ashwah et al. in [3] and for β = 0 and ap = 1
we get the classes S(p, q, α) and C(p, q, α), studied by Chen et al. in [2].

ii) For p = 1, q = 0 the classes β − UST0(α) and β − UCV0(α) are the classes of
β-uniformly starlike functions of order α and β-uniformly convex functions of order α
introduced by Bharati et al. for ap = 1 in [1] and by Frasin for ap 6= 1 in [4].

iii) For p = 1, q = 0, α = 0 we get the classes of β −UCV and β −UST of β uniformly
convex and starlike functions introduced by Kanas and Wisniowska in the papers [5] and
[6].

iv) For p = 1, q = 0, β = 0 we get the well known classes of convex respectively
starlike functions of order α.

v) The new introduced classes are nontrivial generalizations of the above mentioned

classes
(

consider for example, the function f(z) = z2 − 1

6
z3
)

.



Quasi-Hadamard product of some uniformly analytic and p-valent functions with negative coefficients... 41

2. MAIN RESULTS

First, we obtain coefficients estimates for the classes β−UST0(p, q, α) and β−UCV0(p, q, α).

Theorem 2.1. A function f ∈ β − UST0(p, q, α) satisfies the inequality

(2.1)
∞∑

n=1

[(n+p− q− α)+ β(n+ p−q −1)]·δ(n+p, q)·an+p ≤ [(p−q −α) +β(p−q −1)]·δ(p, q)·ap,

where

δ(p, q) =
p!

(p− q)!
=

{
p(p− 1)...(p− q + 1) (q 6= 0)
1 (q = 0) .

Proof. For the begining we prove (2.1) for ap = 1. Since f ∈ β − UST0(p, q, α) we get

(2.2) Re

{
zf (1+q)(z)

f (q)(z)

}
≥ β

∣∣∣∣zf (1+q)(z)

f (q)(z)
− 1

∣∣∣∣+ α

(z ∈ U ; 0 ≤ α < p− q; p ∈ N; p > q; q ∈ N0 = N ∪ {0}, β ≥ 0
)
.

Since |w| ≥ −Rew from (2.2) we obtain

Re

{
zf (1+q)(z)

f (q)(z)

}
≥ α+ β

1 + β

We can notice that 0 ≤ γ =
α+ β

1 + β
< p− q, hence we can say that f ∈ S(p, q, γ).

From Lemma 1.1 it follows that

(2.3)
∞∑

n=1

(n+ p− q − γ)δ(n+ p, q)ap+n ≤ (p− q − γ)δ(p, q)

(0 ≤ γ < p− q; p ∈ N; p > q; q ∈ N0) .

Now if we put γ =
α+ β

1 + β
the inequality (2.3) is equivalent with (2.1) (for ap = 1) so the

proof is done for ap = 1.
When ap 6= 1 we have f(z) = ap · g(z) with g(z) of the form

g(z) = zp −
∞∑

n=1

ap+n

ap
zp+n

satisfying the requested inequality hence f satisfies (2.1) and the proof is complete. �

Theorem 2.2. A function f ∈ β − UCV0(p, q, α) satisfies the inequality
∞∑

n=1

(
n+ p− q
p− q

)
[(n+ p− q − α) + β(n+ p− q − 1)] · δ(n+ p, q) · an+p

(2.4) ≤ [(p− q − α) + β(p− q − 1)] · δ(p, q) · ap,
where

δ(p, q) =
p!

(p− q)!
=

{
p(p− 1)...(p− q + 1) (q 6= 0)
1 (q = 0) .



42 Nicoleta Breaz and Rabha M. El-Ashwah

Proof. From the same reasons as in Theorem 2.1 it is sufficient to prove the inequality (2.4)
for ap = 1. Let f ∈ β − UCV0(p, q, α), with ap = 1. Then we have

Re

{
1 +

zf (2+q)(z)

f (1+q)(z)

}
≥ β

∣∣∣∣zf (2+q)(z)

f (1+q)(z)

∣∣∣∣+ α.

Further we derive

Re

{
zf (2+q)(z)

f (1+q)(z)

}
≥ α− 1

1 + β
.

and if we denote γ − 1 =
α− 1

1 + β
, 0 ≤ γ < p− q, we have

Re

{
1 +

zf (2+q)(z)

f (1+q)(z)

}
≥ γ.

Here we can recognize that f ∈ C(p, q, γ). Then from Lemma 1.2 it follows the inequal-
ity

(2.5)
∞∑

n=1

(
n+ p− q
p− q

)
(n+ p− q − γ)δ(n+ p, q)ap+n ≤ (p− q − γ)δ(p, q) .

If we take in (2.5), γ =
β + α

β + 1
, then we obtain the inequality (2.4), for ap = 1 and the

proof is complete. �

In what follows we introduce a subclass of the class T0(p). We say that a function f(z)
from T0(p) belongs to the class β − T0(k, p, q, α) if and only if

∞∑
n=1

(
n+ p− q
p− q

)k

[(n+ p− q − α) + β(n+ p− q − 1)] δ(n+ p, q)ap+n

(2.6) ≤ [(p− q − α) + β(p− q − 1)] δ(p, q)ap,

0 ≤ α < p − q, p ∈ N, q ∈ N ∪ {0} , β ≥ 0, where k is any fixed non-negative real
number.

Remark 2.2. i) We can notice that the class β−T0(k, p, q, α) is nonempty since the function
of the form

f(z) = apz
p −

∞∑
n=1

[(p− q − α) + β(p− q − 1)] δ(p, q)ap(
n+p−q
p−q

)k
[(n+ p− q − α) + β(n+ p− q − 1)] δ(n+ p, q)

· λp+nz
p+n,

where ap > 0, λp+n > 0 and
∞∑

n=1
λp+n ≤ 1, satisfies the inequality (2.6).

ii) For k > c ≥ 0, we have that

β − T0(k, p, q, α) ⊂ β − T0(c, p, q, α) .
iii) Also we have the inclusion relations

β − UST0(p, q, α) ⊂ β − T0(0, p, q, α)

β − UCV0(p, q, α) ⊂ β − T0(1, p, q, α).



Quasi-Hadamard product of some uniformly analytic and p-valent functions with negative coefficients... 43

Now, in order to study the quasi-Hadamard product, let the functions fi and gj from
the class T0(p) be of the forms:

fi(z) = ap,iz
p −

∞∑
n=1

ap+n,iz
p+n (ap,i > 0; ap+n,i ≥ 0)

gj(z) = bp,jz
p −

∞∑
n=1

bp+n,jz
p+n (bp,j > 0; bp+n,j ≥ 0) ,

The quasi-Hadamard product fi ∗ gj(z) of the functions fi(z) and gj(z) is defined by

fi ∗ gj(z) = ap,ibp,jz
p −

∞∑
n=1

ap+n,ibp+n,jz
p+n (i, j = 1, 2, 3, ...) .

The quasi-Hadamard product (almost a Hadamard product excepting that the minus
sign is kept in front of the sum) has been studied before in various papers, among we recall
the works [3], [4] and [9]. Further, we study the behavior of quasi-Hadamard product on
the class T0(p).

Theorem 2.3. Let the functions fi(z) belong to the classes β − UST0(p, q, αi), i = 1, 2, 3, ...,m
and let the functions gj(z) belong to the classes β − UCV0(p, q, γj), j = 1, 2, 3, ..., d. Then the
quasi-Hadamard product f1 ∗ f2 ∗ f3 ∗ ... ∗ fm ∗ g1 ∗ g2 ∗ g3 ∗ ... ∗ gd(z) belongs to the class
β − T0(m+ 2d− 1, p, q, ρ), where

ρ = max{α1, α2, α3, ..., αm, γ1, γ2, γ3, ..., γd} .

Proof. For the sake of simplicity we will prove only the case when m = d = 1 and
αi = γj = α, the generalization being obtained easily. Hence we have to prove that
if f ∈ β − UST0(p, q, α), g ∈ β − UCV0(p, q, α) then f ∗ g ∈ β − T0(2, p, q, α). Since
f ∈ β − UST0(p, q, α) by the Theorem 2.1 we have:

∞∑
n=1

[(n+ p− q − α) + β(n+ p− q − 1)] · δ(n+ p, q) · an+p

≤ [(p− q − α) + β(p− q − 1)] · δ(p, q) · ap,
From this inequality we obtain further

(2.7) an+p ≤
[

[(p− q − α) + β(p− q − 1)] · δ(p, q)
[(n+ p− q − α) + β(n+ p− q − 1)] · δ(n+ p, q)

]
· ap.

We denote by H(α) the function

H(α) =
[(p− q − α) + β(p− q − 1)]

[(n+ p− q − α) + β(n+ p− q − 1)]
.

Since H(α) is a decreasing function and
δ(p, q)

δ(n+ p, q)
≤ 1, we obtain from (2.7), the

following evaluation:

an+p ≤
[

[(p− q) + β(p− q − 1)]

[(n+ p− q) + β(n+ p− q − 1)]

]
· ap.

Now we denote by G(β) the function
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G(β) =
[(p− q) + β(p− q − 1)]

[(n+ p− q) + β(n+ p− q − 1)]
.

which is also a decreasing function, hence

(2.8) an+p ≤
p− q

n+ p− q
· ap.

On the other side, from the definiton of the class β−T0(2, p, q, α) it is sufficient to show
that

∞∑
n=1

(
n+ p− q
p− q

)2

[(n+ p− q − α) + β(n+ p− q − 1)] ·

·δ(n+ p, q)ap+nbp+n

(2.9) ≤ [(p− q − α) + β(p− q − 1)] δ(p, q)apbp.

We evaluate the left term of the inequality (2.9) by using (2.8) and we get

∞∑
n=1

(
n+ p− q
p− q

)2

[(n+ p− q − α) + β(n+ p− q − 1)] ·

·δ(n+ p, q)ap+nbp+n ≤
∞∑

n=1

(
n+ p− q
p− q

)2

[(n+ p− q − α) + β(n+ p− q − 1)] ·

(2.10) ·δ(n+ p, q)

[
p− q

n+ p− q
· ap
]
bp+n.

Further in the last inequality we apply the fact that g ∈ β − UCV0(p, q, α), namely

∞∑
n=1

(
n+ p− q
p− q

)
[(n+ p− q − α) + β(n+ p− q − 1)] δ(n+ p, q)bp+n

(2.11) ≤ [(p− q − α) + β(p− q − 1)] δ(p, q)bp.

If we put (2.11) in (2.10) the proof is complete. �

If in Theorem 2.3 we consider the functions only from β − UST0(p, q, α) or only from
β − UCV0(p, q, α) we obtain next corollaries:

Corollary 2.1. Let the functions fi belong to the classes β − UST0(p, q, αi), i = 1,m. Then
the quasi Hadamard product f1 ∗ f2 ∗ ... ∗ fm belongs to the class β − T0(m − 1, p, q, ρ), ρ =
max {α1, ..., αm}.

Corollary 2.2. Let the functions gj belong to the classes β − UCV0(p, q, γj), j = 1, d. Then
the quasi Hadamard product g1 ∗ g2 ∗ ... ∗ gd belongs to the class β − T0(2d − 1, p, q, ρ), ρ =
max {γ1, ..., γd}.

Remark 2.3. i) If in Theorem 2.3 and in Corollaries 2.1 and 2.2 we take β = 0 we obtain
the same results with El-Ashwah et al., given in [3].

ii) If in Theorem 2.3 and in Corollaries 2.1 and 2.2 we take p = 1 and q = 0 we obtain
the same results as the results given by Frasin in [4].
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