
By

Dr. Reda Elbarougy

رضا الباروجى/ د

Lecturer of computer sciences

In Mathematics Department

Faculty of Science

Damietta University

2017-04-23الأحد

رقم المحاضرة

الحالة الموضوع التاريخ م

تم الفصل الأول مقدمة 12-02-2017 1

تم الفصل الأول مقدمة 19-02-2017 2

تم الفصل الثانى اساسيات 05-03-2017 3

تم الفصل الرابع المصفوفات 12-03-2017 4

تم الفصل الرابع المصفوفات 19-03-2017 5

الفصل الخامس 26-03-2017 6

الفصل الخامس 02-04-2017 7

Stacks أضافى الفصل السادس 04-04-2017 8

الفصل السادس 09-04-2017 9

أجازة 16-04-2017

لا 19-04-2017 10

الفصل السابع 23-04-2017 11

30-04-2017 12

07-05-2017
2

Chapter 7:Tree

3

• General Tree

• Binary Trees

• Representing Binary Trees In Memory

• TRAVERSING BINARY TREES

Chapter 7

4

5

Linear types of data structures:

• Arrays,

• Lists,

• Stacks and Queues.

Now we defines a nonlinear data structure called Tree.

This structure is mainly used to represent data containing a

hierarchical relationship between nodes/elements e.g. family

trees and tables of contents.

There are two main types of tree:

General Tree

Binary Tree

Trees

6

General Tree:

A tree where a node can has any number of children /

descendants is called General Tree.

For example:

Trees

7

Trees

Following figure is also an example of general tree where root is “Desktop”.

8

Trees

This following figure is a general tree where root is “Visual Programming”.

9

A binary tree T is defined as a finite set of elements, called nodes, such

that:

a)T is empty (called the null tree or empty tree), or

b)T contains a distinguished node R, called the root of T, and the

remaining nodes of T form an ordered pair of disjoint binary trees

T1 and T2.

7.2 Binary Trees

10

 If T does contain a root R, then the two trees T1 and T2 are

called, respectively, the left and right subtrees of R.

 If T1 is nonempty, then its root is called the left successor of R;

 Similarly, if T2 is nonempty, then its root is called the right

successor of R.

Binary Trees

11

A binary tree T is frequently presented by a diagram in the plane called a

picture of T . Specifically, the diagram in Fig. 7-1 represents a binary tree

as follows:

i.T consists of 11 nodes, represented by the letters A through L, excluding

I.

ii.The root of T is the node A at the top of the diagram.

iii.A left-downward slanted line at a node N indicates a left successor of

N; and a right-downward slanted line at N indicates a right successor of N.

B C

D

A

F

HE G

J K

L

Binary Trees

12

Observe that;

a)B is a left successor and C is a right successor of the node A.

b)The left subtree of the root A consists of the nodes B, D, E and F, and

the right subtree of A consists of the nodes C, G, H, J, K and L.

B C

D

A

F

HE G

J K

L

Binary Trees

13

 Any node N in a binary tree T has either 0, 1 or 2 successor.

 The nodes A, B, C and H have two successors,

 the nodes E and J have only one successor, and

 the nodes D, F, G, L and K have no successors.

 The nodes with no successors are called terminal nodes.

 The above definition of the binary tree T is recursive since T is

defined in terms of the binary subtrees trees T1 and T2.

 This means, in particular, that every node N of T contains a left and

a right subtree.

 Moreover, if N is a terminal node, then both its left and right

subtree are empty.

Binary Trees

14

 Binary tree T and T ́ are said to be similar if they have the

same structure or, in other words, if they have the same shape.

The trees are said to be copies if they are similar and if they

have the same contents at corresponding nodes.

Similar Binary Trees

15

Example 7.1: Consider the four binary trees in fig. 7.2.

 The three trees (a), (c) and (d) are similar.

 In particular, the trees (a) and (c) are copies since they also have

the same data at corresponding nodes.

 The tree (b) is neither similar nor a copy of the tree.

A

DC

B

(a)

A

DC

B

(c)

E

HG

F

(d)
HG

F

E

(b)

Fig. 7.2

Example 7.1

16

Arithmetic Expressions as trees

17

17

Figure 11.5 Expression Trees

Arithmetic Expressions as trees(cont.)

18

Consider any algebraic expression E involving only binary operations,

such as

E = (a-b) / ((c * d) + e)

 E can be represented by means of the binary tree T pictured in fig. 7.3.

 That is, each variable or constant in E appears as an "internal" node in

T whose left and right subtrees correspond to the operands of the

operation.

Fig. 7.3: E = (a – b) / ((c * d) + e)

Example 7.2: Algebraic Expressions

/

+

a
*b

-

dc

e

19

For example:

a) In the expression E, the operands of + are c * d and e.

b) In the tree T, the subtrees of the node + correspond to the

subexpression c * d and e.

Every algebraic expression will correspond to a unique tree, and

vice versa.

Example 7.2: Algebraic Expressions

20

 Terminology describing family relationships is frequently used to

describe relationships between the nodes of a tree T.

 Specifically, suppose N is a node in T with left successor S1 and

right successor S2. Then N is called the parent or father of S1 and

S2.

 Analogously, S1 is called the left child or son of N, and S2 is called

the right child or son of N. Furthermore, S1 and S2 are said to be

siblings or brother. Every node N in a binary tree , except the root,

has a unique parent, called the predecessor of N.

 The terms descendant and ancestor have their usual meaning. That

is, a node L is called a descendant of a node N (and N is called an

ancestor of L) if there is a succession of children from N to L. In

particular, L is called a left or right descendant of N according to

whether L belongs to the left or right subtree of N.

TERMINOLOGY

21

 Terminology from graph theory and horticulture are also used with

a binary tree T .

 Specifically, the line drawn from a node N of T to a successor is

called an edge, and a sequence of consecutive edges is called a

path.

 A terminal node is called a leaf, and a path ending in a leaf is called

a branch.

 Each node in a binary tree T is assigned a level number, as follows.

The root R of the tree T is assigned the level number 0, and every

other node is assigned a level number which is 1 more than the

level number of its parent.

 Furthermore, those nodes with the same level number are said to

belong to the same generation.

TERMINOLOGY

22

 The depth (or height) of a tree T is the maximum number of nodes

in a branch of T . This turns out to be 1 more than the largest level

number of T . The tree T in Fig. 7-1 has depth 5.

TERMINOLOGY

B C

D

A

F

HE G

J K

L

23

23

 Let T be a binary tree. This section discusses the two ways

of representing T in memory.

i. Linked representation of T.

ii. Sequential representation of T.

 The main requirement of any representation of T is that

a) one should have direct access to the root R of T and,

b) given any node N of T, one should have direct access to the

children of N.

Representing Binary Trees In Memory

24

24

 The most popular way to present a binary tree is linked

representation.

 The Linked representations of tree, maintains three parallel

arrays.

 An INFO array contains the data of each node, LEFT array

contains the location of left child and RIGHT array contains

location of right child.

 A ROOT pointer points to the root node of the tree.

 Each element is represented by a node that has two link

fields LEFT (leftChild) and RIGHT (rightChild) plus an

Info field

 The space required by an n node binary tree is

n * sizeof(binaryTreeNode)

Linked Representation of Binary Tree

25

1. INFO[K] contains the data at the node N

2. LEFT[K] contains the location of the left

child of node N

3. RIGHT[K] contains the location of the

right child of node N.

Linked Representation of Binary Tree

26

1. Furthermore, ROOT will contain the location of the root R of T.

2. If any subtree is empty, then the corresponding pointer will

contain the null value; if the tree T itself is empty, then ROOT

will contain the null value.

Linked Representation of Binary Tree

27

Example 7.3

Fig : 7-6

B C

D

A

F

HE G

J K

L

Fig : 7-1

28

Example 7.4

29

Example 7.4

30

 Suppose T is a binary tree that is complete or nearly complete. Then

there is an efficient way of maintaining T in memory called the

sequential representation of T.

 This representation uses only a single linear array TREE together with

a pointer variable END as follows:

a) The root R of T is stored in TREE[1].

b) If a node occupies TREE[k], then its left child is stored in TREE[2*K]

and its right child is stored in TREE[2*k+1]

c) END contains the location of the last node of T.

NULL is used to indicate an empty subtree. TREE[1] = NULL indicates

that the tree is empty.

The sequential representation of a tree with depth d will require an

array with approximately 2d+1 elements. The sequential representation

is usually inefficient unless, the binary tree T is complete or nearly

complete.

Binary Trees: Array representation

31

Binary Trees: Array representation

32

Advantages of linear representation:

1. Simplicity.

2. Given the location of the child (say, k), the location of the parent is

easy to determine (k / 2).

Disadvantages of linear representation:

1. Additions and deletions of nodes are inefficient, because of the data

movements in the array.

2. Space is wasted if the binary tree is not complete. That is, the linear

representation is useful if the number of missing nodes is small.

Linear representation of a binary tree can be implemented by means of a

linked list instead of an array

This way the above mentioned disadvantages of the linear representation

is resolved.

Linear representation of a binary tree

33

 there are three standard ways of traversing a binary tree T with root

R. They are

1) Preorder.

2) Inorder and

3) Postorder.

TRAVERSING BINARY TREES

34

TRAVERSING BINARY TREES

Preorder: is also called Node-Left-Right (NLR)

1. Process the root R

2. Traverse the left subtree of R in preorder.

3. Traverse the right subtree of R in preorder.

35

TRAVERSING BINARY TREES

Inorder: is also called Left-Node-Right (LNR)

1. Traverse the left subtree of R in inorder

2. Process the root R.

3. Traverse the right subtree of R in inorder.

36

TRAVERSING BINARY TREES

PostOrder: is also called Left-Right-Node (LRN)

1. Traverse the left subtree of R in postorder

2. Traverse the right subtree of R in postorder

3. Process the root R.

Example

This figure shows how we visit each node in a tree using preorder

traversal. The figure also shows the walking order. In preorder

traversal we visit a node when we pass from its left side. The

nodes are visited in this order: A, B, C, D, E, F.

Example

38

Example 7.5

39

Example 7.6

40

Example

41

a b d g h e i c f j

Preorder Example (visit = print)

42

/ * + a b - c d + e f

Gives prefix form of expression.

Preorder of Expression Tree

43

g d h b e i a f j c

Inorder Example (visit = print)

+

a b

-

c d

+

e f

*

/

Gives infix form of expression

ea + b * c d / + f-

Inorder Of Expression Tree

45

g h d i e b j f c a

Postorder Example (visit = print)

46

a b + c d - * e f + /

Gives postfix form of expression.

Postorder of Expression Tree

47

Example 7.7

48

Example 7.8

تم الإنتهاء من المحاضرة

