Data Structure

Sy s S
cudad) @3@\9 sluos| @gb A48 ﬂ‘)

By
Dr. Reda Elbarougy
9o Lay [
Lecturer of computer sciences
In Mathematics Department
Faculty of Science
Damietta University

Yo lVaeg¥YY JAY\

SJ&M\eﬁJ

Al £ sy gall Gl a
i dadia J oY) Juadll Yo Voo ¥ary |
i dadia J oY) Juadll YoeyVae¥oa | Y
A | il A Juadl YolVas¥oio | ¥
al | cldghaal) aal i Juadll | Y oAVaeWaNY g
al | cldghaal) al) Juadll | YoAVaaYaNd 0
osaAl) Juadl) YelVar VYR 1
UM&‘M‘ Yo lVae éaV \'%
Stacks uﬁl"“ uabadd) Juadll Yo '\Varéae§ A
QAJM\M\ Yo lVaeéae q

5 3\l YoyVae £y

Y YoyVargyd |). Gum

@M\M\ YodVaedaYY [V
Yo lVaréaWe (VY

Yo \Var ooV

Chapter 7:Tree

Chapter 7

General Tree
Binary Trees

Representing Binary Trees In Memory
TRAVERSING BINARY TREES

Trees

Linear types of data structures:
* Arrays,

e Lists,

o Stacks and Queues.

Now we defines a nonlinear data structure called 7ree.

This structure 1s mainly used to represent data containing a
hierarchical relationship between nodes/elements e.g. family
trees and tables of contents.

There are two main types of tree:
| General Tree
| Binary Tree

Trees

General Tree:

A tree where a node can has any number of children /
descendants is called General Tree.

For example:

Trees

Following figure is also an example of general tree where root is “Desktop’’.

@ Deskiaop
= __"| My Documents
=) Alkova
= 1) Speling
[Lexicons
= [£3) ¥MLSpv2009
+ () Examples
+) Elustooth
+) Cyberlink,
j Py Music
+ J My Pictures
+ ﬁ My Wideos
+ () My Wirtual Machines
= j' My Compuker
+ ﬁ 314 Floppy (A2
= “e@ Local Disk (20
=) DELL
+) Documents and Settings
[@UI Java by Dr Jamal
=) Inetpub
) AdminScripks
) Frproaok
() iissamples
+ () mailroaok
) Scripks
+ () wawrook
) iesdkl. 4.1 02
) Program Files
) SimplyJava
L
H () WINDOWS
+ e Local Disk (D
+ “e@ Local Disk (E:)
+ b DVD-RW Drive (F:)

+

5
5
5
5

Trees

This following figure is a general tree where root is “Visual Programming”.

Visual Programming

7 Introduction to the Visual Studio .NET IDE 30
1.1 Introduction 34
1.2 Visual Studho NET Integrated Developm ert Errar cenm ent (IDE) Ovrersaew 34
1.3 MenuBar and T oolbar 37
1.4 Visual Studio NET Windows 39

1.4.1 Solution Explorer 39
142 Toolbox 40
143 Properties "Window 42
1.5 Using Help 42
1.6 Simple Program: Displaying T ext and anImage <4

2ASP .NET.Web Forms and Web Controls 48
2.1 Iniroduction 49
2.2 Sunple HTTP Transacthon S0
2.3 Svydem Architectre 32
2.4 Creating and Rurrung a Simple Web Farm Example 53
2.5 Web Controls 66

2.3.1 Text and Graphics C antrols a7
2.5.2 AdRotator C otral 71
2521 A-axisCortrol P
2522 Y.arisContral 75
2.5.3 Validation Contrals 76
2.6 Session Tracking g7
26.1 Cockies 22
26.2 Session Tracking with HttpSessionState o7
2.7 Case Study. Online Guest Book 100

2.8 Casge Study: C ommecting to a Databage in ASPF NET 113

7.2 Binary Irees

A binary tree T is defined as a finite set of elements, called nodes, such
that:

a)T 1s empty (called the null tree or empty tree), or
b)T contains a distinguished node R, called the root of T, and the

remaining nodes of T form an ordered pair of disjoint binary trees
T1 and T2.

T1 12

Binary Trees

» If T does contain a root R, then the two trees T1 and T2 are
called, respectively, the left and right subtrees of R.

» If T1 1snonempty, then its root is called the left successor of R;

» Similarly, if T2 is nonempty, then its root is called the right
successor of R.

T1 12

10

Binary Trees

A binary tree T is frequently presented by a diagram in the plane called a
picture of T . Specifically, the diagram in Fig. 7-1 represents a binary tree
as follows:

1.T consists of 11 nodes, represented by the letters A through L, excluding
I.

11.The root of T 1s the node A at the top of the diagram.

111.A left-downward slanted line at a node N indicates a left successor of
N; and a right-downward slanted line at N indicates a right successor of N.

/T
/\ N

e /\
F / y

Binary Trees

Observe that;

a)B 1s a left successor and C is a right successor of the node A.

b)The left subtree of the root A consists of the nodes B, D, E and F, and
the right subtree of A consists of the nodes C, G, H, J, K and L.

/N
N N
Ve N
i e

L

12

Binary Trees

» Any node N in a binary tree T has either 0, 1 or 2 successor.
» The nodes A, B, C and H have two successors,

» the nodes E and J have only one successor, and

» the nodes D, F, G, L and K have no successors.

» The nodes with no successors are called ferminal nodes.

» The above definition of the binary tree T is recursive since T is
defined 1n terms of the binary subtrees trees T1 and T2.

» This means, in particular, that every node N of T contains a left and
a right subtree.

» Moreover, if N is a terminal node, then both its left and right
subtree are empty.

13

Similar Binary Trees

> Binary tree T and T are said to be similarif they have the
same structure or, in other words, if they have the same shape.
The trees are said to be copies i1f they are similar and 1f they
have the same contents at corresponding nodes.

14

Example 7.1

Example 7.1: Consider the four binary trees in fig. 7.2.
» The three trees (a), (¢) and (d) are similar.

» In particular, the trees (a) and (c) are copies since they also have
the same data at corresponding nodes.

» The tree (b) is neither similar nor a copy of the tree.

AN / N N
/\ /\ /\ AN

(a) (b) (c) (d)

Fig. 7.2
15

Arithmetic Expressions as trees

a-b a-(b/c) (a-b)*c

e e NN
ANRAN

C |

Arithmetic expressions are often represented as binary trees.
Internal nodes are operations - Leaves are numbers/variables.

Operator precedence is enforced by the tree shape.

16

Arithmetic Expressions as trees(cont.)

(2 ()
(2 o (1o (D
OROBRONRCO (3 ()
(a) (a = bH) +(c /d) o o

(by{({a +H)y +c)y +d)

(C)((—a) +(x + v ((+hH)=(c = a))

Figure 11.5 Expression Trees

17

Example 7.2: Algebraic Expressions

Consider any algebraic expression E involving only binary operations,
such as

E=(a-b)/((c*d)+e)
» E can be represented by means of the binary tree T pictured in fig. 7.3.

» That is, each variable or constant in E appears as an "internal" node in
T whose left and right subtrees correspond to the operands of the
operation.

I~
a/-\b / \e
c/* \d

Fig.7.3: E=(a-b)/((c*d)+e) 18

Example 7.2: Algebraic Expressions

For example:
a) In the expression E, the operands of + are ¢ * d and e.

b) In the tree T, the subtrees of the node + correspond to the
subexpression ¢ * d and e.

Every algebraic expression will correspond to a unique tree, and
vice versa.

19

TERMINOLOGY

» Terminology describing family relationships is frequently used to
describe relationships between the nodes of a tree T.

» Specifically, suppose N is a node in T with left successor S, and
right successor S,. Then N is called the parent or fatherof S, and
S,.

» Analogously, S, is called the /ef? child or son of N, and S, is called
the right child or son of N. Furthermore, S, and S, are said to be
siblings or brother. Every node N 1n a binary tree , except the root,
has a unique parent, called the predecessor of N.

» The terms descendant and ancestor have their usual meaning. That
1s, a node L 1s called a descendant of a node N (and N 1s called an
ancestor of L) 1f there 1s a succession of children from N to L. In
particular, L 1s called a left or right descendant of N according to
whether L belongs to the left or right subtree of N.

—\v

TERMINOLOGY

» Terminology from graph theory and horticulture are also used with
a binary tree T .

» Specifically, the line drawn from a node N of T to a successor is
called an edge, and a sequence of consecutive edges 1s called a
path.

» A terminal node is called a /eaf, and a path ending in a leaf is called
a branch.

» Each node in a binary tree T is assigned a /level number, as follows.
The root R of the tree T is assigned the level number 0, and every
other node 1s assigned a level number which is 1 more than the
level number of its parent.

» Furthermore, those nodes with the same level number are said to
belong to the same generation.

21

TERMINOLOGY

» The depth (or height) of a tree T 1s the maximum number of nodes
in a branch of T . This turns out to be 1 more than the largest level
number of T . The tree T in Fig. 7-1 has depth 5.

/T
NN,
’ / J/ \K
" e

L

22

Representing Binary Trees In Memory

» Let T be a binary tree. This section discusses the two ways
of representing T 1n memory.

1. Linked representation of T.

11. Sequential representation of T.

» The main requirement of any representation of T is that
a) one should have direct access to the root R of T and,

b) given any node N of T, one should have direct access to the
children of N.

23

Linked Representation of Binary Tree

» The most popular way to present a binary tree is linked
representation.

» The Linked representations of tree, maintains three parallel
arrays.

» An INFO array contains the data of each node, LEFT array
contains the location of left child and RIGHT array contains
location of right child.

» A ROOT pointer points to the root node of the tree.

» Each element is represented by a node that has two link
fields LEFT (leftChild) and RIGHT (rightChild) plus an
Info field

» The space required by an nnode binary tree is
n *sizeof(binaryTreeNode)

Linked Representation of Binary Tree

. INFO[K] contains the data at the node N
. LEFT[K] contains the location of the left

child of node N

. RIGHTI[K] contains the location of the

right child of node N.

25

Linked Representation of Binary Tree

1. Furthermore, ROOT will contain the location of the root R of T.

2. If any subtree 1s empty, then the corresponding pointer will
contain the null value; if the tree T itself 1s empty, then ROOT
will contain the null value.

26

Example 7.3

Consider the binary tree T in Fig. 7-1. A schematic diagram of the linked representation of 7 appears in Fig.
7-6. Observe that each node is pictured with its three fields, and that the empty subtrees are pictured by using X
for the null entries. Figure 7-7 shows how this linked representation may appear in memory. The choice of 20

elements for the arrays is arbitrary. Observe that the AVAIL list is maintained as a one-way list using the array
LEFT.

ROOT | »

/N = |

a\ / —l ARl Rt
SEON- e

F J K
w | L | =

Fig : 7-1

Fig : 7-6

27

Suppose the personnel file of a small company contains the following data on it§ nine employees:
Sex,

Name, Social Security Number,

Monthly Salary

Figure 7-8 shows how the file may be maintained in memory as a binary tree. Compare this data structure with Fig.
5-12, where the exact same data are organized as a one-way list.

ROOT

AVAIL

— l
e Sw = R - T R P)

— e
woN

14

NAME SSN SEX SALARY LEFT RIGHT
0
Davis 192-38-7282 Female 22 800 0 12
Kelly 165-64-3351 Male 19000 0
Green 175-56-2251 Male 27200 2
1
Brown 178-52-1065 Female 14 700 0 0
Lewis 181-58-9939 Female 16 400 3 10
11
Cohen 177-44-4557 Male 19000 6 4
Rubin 135-46-6262 Female 15 500 0 0
! 13
Evans 168-56-8113 Male 34200 0 0
5
Harris 208-56-1654 Female 22800 9 7
Fig. 7-8

28

Suppose we want to draw the tree diagram which corresponds to the binary tree in Fig. 7-8. For
notational convenience, we label the nodes in the tree diagram only by the key values NAME. We
construct the tree as follows:

{a) The value ROOT = 14 indicates that Harris is the root of the tree.
(b) LEFT[14] = 9 indicates that Cohen is the left child of Harris, and RIGHT{14] = 7 indicates
that Lewis is the right child of Harris.

Repeating Step (b) for each new node in the diagram, we obtain Fig. 7-9.
g

Kel Rubin

3
/

Davis

p

Evans

Fig. 79 29

Binary Trees: Array representation

» Suppose T is a binary tree that is complete or nearly complete. Then
there 1s an efficient way of maintaining T in memory called the
sequential representation of T.

» This representation uses only a single linear array TREE together with
a pointer variable END as follows:

a) The root R of T 1s stored in TREE[1].

b) If a node occupies TREE[k], then its left child is stored in TREE[2*K]
and 1its right child is stored in TREE[2*k+1]

c) END contains the location of the last node of T.

NULL is used to indicate an empty subtree. TREE[1] = NULL indicates
that the tree 1s empty.
The sequential representation of a tree with depth d will require an
array with approximately 24! elements. The sequential representation
1s usually mefficient unless, the binary tree T 1s complete or nearly
complete.

(oL V)

Binary Trees: Array representation

4%
2 f M‘-\‘ 77
Ilﬂ “\\]ﬂl] ‘Hﬁ\m
\\[5 I.':/' HH/
{al

1 2 3 4 5 6 7 8B 9% I 11 12 13 14 15 16 17

TREEj4s 22 77| f30] (w| 18|23 | 38

END |14/ — J

Linear representation of a binary tree

Advantages of linear representation:

1. Simplicity.
2. Given the location of the child (say, k), the location of the parent 1s
easy to determine (k / 2).

Disadvantages of linear representation:

1. Additions and deletions of nodes are inefficient, because of the data
movements in the array.

2. Space 1s wasted 1f the binary tree is not complete. That 1s, the linear
representation is useful 1f the number of missing nodes 1s small.

Linear representation of a binary tree can be implemented by means of a
linked list instead of an array

This way the above mentioned disadvantages of the linear representation
Is resolved.

TRAVERSING BINARY TREES

» there are three standard ways of traversing a binary tree T with root
R. They are

1) Preorder.
2) Inorder and
3) Postorder.

1 2
Left Right Left Right Left Right
subtree subtree subtree subtree subtree subtree
a. Preorder traversal b. Inorder traversal c. Postorder Ttraversal

33

TRAVERSING BINARY TREES

Preorder: is also called Node-Left-Right (NLR)
1. Process the root R
2. Traverse the left subtree of R In preorder.
3. Traverse the right subtree of R In preorder.

.,
AN
C &Y NS
2 3 AL 'y
. {if }D\ s W)
subtree subtree { ;;j . .IR_E;IZ -; H | ":

Pre-order- F B A D, C E, G, | H
a. Preorder traversal

=

34

TRAVERSING BINARY TREES

Inorder: Is also called Left-Node-Right (LNR)
1. Traverse the left subtree of R in inorder
2. Process the root R.
3. Traverse the right subtree of R In inorder.

.,

K@\
Ry Aty

A

- .
A B\(G)

rant %’“\ 5“\

) A) |l D) 1)

Left Right Ko/ el e
subtree subtree AR Y~
(c): {E) (H):
. el e

In-order A B.C. D E.F G H.I &

b. Inorder traversal

TRAVERSING BINARY TREES

PostOrder: is also called Left-Right-Node (LRN)
1. Traverse the left subtree of R in postorder
2. Traverse the right subtree of R In postorder

3. Process the root R.

1 2
Left Right
subtree subtree

c. Postorder Ttraversal

e v
Ccicllc

‘ l D
TN N T Y
| {2; 1 E}: ‘[He
o S TN

Post-order: A, C,E,D,B,H |, G F &

36

This figure shows how we visit each node in a tree using preorder
traversal. The figure also shows the walking order. In preorder
traversal we visit a node when we pass from its left side. The
nodes are visited in this order: A, B, C, D, E, F.

Start Stop
€A
i ¢ 58
3 4 6
A |B|C||D E F Q Q e
a. Processing order b. “Walking” order

Example

Consider the binary tree T in Fig. 7-11. Observe that A is the root, that its left subtree L. consists of nodes B,

D and E and that its right subtree R, consists of nodes C and F.

Fig. 7'1 1

The preorder traversal of T processes A, traverses L, and traverses R.. However, the preorder traversal of
L processes the root B and then D and E, and the preorder traversal of R, processes the root C and then P
Hence ABDECEF is the preorder traversal of T.

The inorder traversal of T traverses L., processes A and traverses R.. However, the inorder traversal of L+
processes D, B and then E, and the inorder traversal of R processes C and then F. Hence DBEACEF is the
inorder traversal of T.

The postorder traversal of T traverses L., traverses R, and processes A. However, the postorder traversal
of Ly processes D, E and then B, and the postorder traversal of R, processes F and then C. Accordingly,
DEBFCA is the postorder traversal of T.

38

Example 7.6

Consider the tree T in Fig. 7-12. The preorder traversal of T is ABDEFCGHJLK, This order is the same as
the one obtained by scanning the tree from the left as indicated by the path in Fig. 7-12. That is, one “travels”
down the left-most branch until meeting a terminal node, then one backtracks to the next branch, and so on. In the
preorder traversal, the right-most terminal node, node K, is the last node scanned. Observe that the left subtree of
the root A is traversed before the right subtree, and both are traversed after A. The same is true for any other
node having subtrees, which is the underlying property of a preorder traversal.

(Inorder) D> B F E A G C L J H K
{(Poswordery D F E B G L 1 K H C A
(Preorder) A B D E F C G H J L K
-~
-
-
-~ A
-
f..r“
B C
~
y \ HQ/
-*f - vl
\ v s) £ fiﬂ__..n"_ﬁ H
~_ " ! - /
Vi A Fi
{ Fff f" i K
I"""-h-.---l"-'IlII ’F/ P i
YAV
v L X 39

40

Preorder Example (visit = print)

a b dghweict]

Preorder of Expression Tree

/| *+ ab -cd+ e f
Gives prefix form of expression.

Inorder Example (visit = print)

gdhbeiliaf]jec

Inorder Of Expression Tree

a + b * ¢ - d/ e + f

Gives Infix form of expression

Postorder Example (visit = print)

Postorder of Expression Tree

ab+cd-*ef + |/
Gives postfix form of expression.

EXAMPLE 7.7

Let E denote the following algebraic expression:
[a+(b-c)]*[(d—e)i(f+g—h)

The corresponding binary tree T appears in Fig. 7-13. The reader can verify by inspection that the preorder and
postorder traversals of T are as follows:

(Preorder) * = a — b ¢ /| - d e — + f g k
(Postorder): @ b ¢ — + d e = f @ + h - | =

The reader can also verify that these orders correspond precisely to the prefix and postfix Polish notation of E as
discussed in Sec. 6.4. We emphasize that this is true for any algebraic expression E.

. +/'\/ i
e T
AT
/\

© Fig. 7-13

Consider the binary tree T in Fig. 7-14. The reader can verify that the postorder traversal of T is as follows:
' Sii: 86085 'Shi 85 0858 & M

One main property of this traversal algorithm is that every descendant of any node N is processed before the node
N. For example, S, comes before S,, S, and S, come before S,. Similarly, S, and S, come before S,, and S,, S, and
S, come before S.. Moreover, all the nodes S, S,, ..., S, come before the root M.

