Data Structure

$$
\begin{aligned}
& \text { * } \\
& \text { 茥 }
\end{aligned}
$$

By

Dr. Reda Elbarougy

د/ رضا الباروجى

Lecturer of computer sciences In Mathematics Department

Faculty of Science
Damietta University

رقم المحاضرة

Chapter 8:
 Graphs and their application

Objectives

Objectives

After completing this chapter, you will be able to:

- Use the relevant terminology to describe the difference between graphs and other types of collections
- Recognize applications for which graphs are appropriate
- Explain the structural differences between an adjacency matrix representation of a graph and the adjacency list representation of a graph
- Analyze the performance of basic graph operations using the two representations of graphs
- Describe the differences between a depth-first traversal and a breadth-first traversal of a graph

Outline

8.1 Introduction

8.2 Graph Theory Terminology

- Graph and Multigraph
- Proposition 8.1
- Directed Graphs
8.3 Sequential Representation Of Graphs
- Adjacency matrix;
- Proposition 8.2
- Path matrix
- Proposition 8.3
8.5 Linked representation of a graph

Introduction

$>$ A Graph is a nonlinear data structure, which is having point to point relationship among the nodes. Each node of the graph is called as a vertex and link or line drawn between them is called and edge

8.2 Graph Theory Terminology

What is a graph?

- A data structure that consists of a set of nodes (vertices) and a set of edges that relate the nodes to each other
- The set of edges describes relationships among the vertices

Graphs

$>$ A graph G consists of two things:

1) A set V of elements called nodes (or points or vertices)
2) A set E of edges such that each edge e in E is identified with a unique (unordered) pair [u, v] of nodes in V, denoted by e $=[\mathrm{u}, \mathrm{v}]$
$>$ Sometimes we indicate the parts of a graph by writing $\mathrm{G}=(\mathrm{V}, \mathrm{E})$.
$\mathrm{V}(\mathrm{G})$: a finite, nonempty set of vertices
$\mathrm{E}(\mathrm{G})$: a set of edges (pairs of vertices)

$$
\begin{gathered}
V(G)=\{0,1,2,3\} \\
E(G)=\{(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)\}
\end{gathered}
$$

Graphs and Multigraphs

$>$ Suppose edge $\mathbf{e}=[\mathbf{u}, \mathbf{v}]$, then the nodes u and v are called end points of the edge e.
$>$ The node u is called source node and node v is called destination node,
$>$ The nodes u and v are called adjacent nodes or neighbors.
$>$ The line drawn between to adjacent nodes is called an edge.
$>$ If an edge is having direction, then the source node is called adjacent to the destination and destination node is adjacent from source.
$>$ The degree of a node u, written $\operatorname{deg}(\mathbf{u})$, is the number of edges containing u.
$>$ Isolated node: If degree of a node is zero i.e. if the node is not having any edges, then the node is called isolated node.
$>$ If $\operatorname{deg}(u)=0$ - that is, if u does not belong to any edge-then u is called an isolated node.

Path and Cycle

$>$ Path: A path is a sequence of consecutive edges between a source and a destination through different nodes.
$>$ A path, said to be closed if source is equal to destination.
$>$ Simple path: The path is said to be simple if all nodes are distinct.
$>$ Length of a path: Number of edges on the path.
$>$ A path P of length n from a node u to a node v is defined as a sequence of $\mathrm{n}+1$ nodes.

$$
\mathbf{P}=\left(\mathbf{v}_{0}, \mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{\mathbf{n}}\right)
$$

such that $\mathrm{u}=\mathrm{v}_{0} ; \mathrm{v}_{\mathrm{i}-1}$ is adjacent to v_{i} for $\mathrm{i}=1,2, \ldots, \mathrm{n}$ and $\mathrm{v}_{\mathrm{n}}=\mathrm{v}$.
$>$ Cycle: A cycle is closed path with length 3 or more. A cycle of length k is called a k -cycle.
$>$ Loops: An edge e is called a loop if it has identical endpoints, that is, if $\mathrm{e}=[\mathrm{u}, \mathrm{u}]$.

Path and Cycle

Types of Path

i. Simple Path
ii. Cycle Path
i. Simple Path: Simple path is a path in which first and last vertex are different $\left(V_{0} \neq V_{n}\right)$
ii. Cycle Path: Cycle path is a path in which first and last vertex are same $\left(\mathrm{V}_{0}=\mathrm{V}_{\mathrm{n}}\right)$. It is also called as Closed path.

Graphs and Multigraphs

$>$ Connected Graph:

A graph G is said to be connected if there is a path between any two of its nodes.
$>$ Complete Graph : A graph is called complete if all the nodes of the graph are adjacent to each other. A complete graph with n nodes will have $n *(n-1) / 2$ edges.
> Tree:
A connected graph T without any cycles is called a tree graph or free tree or, simply, a tree.

Directed vs. undirected graphs

- When the edges in a graph have no direction, the graph is called undirected

Directed vs. undirected graphs

- When the edges in a graph have a direction, the graph is called directed (or digraph)
(b) Graph2 is a directed graph.

> Warning: if the graph is directed, the order of the vertices in each edge is important !!

Trees vs graphs

- Trees are special cases of graphs!!

(c) Graph3 is a directed graph.

V(Graph3) $=\{$ A, B, C, D, E, F, G, H, I, J \}
$E($ Graph 3$)=\{(G, D),(G, J),(D, B),(D, F)(I, H),(I, J),(B, A),(B, C),(F, E)\}$

Graph terminology

- What is the number of edges in a complete directed graph with N vertices?

$$
N *(N-1)
$$

(a) Complete directed graph.

Graph terminology

- What is the number of edges in a complete undirected graph with N vertices?

$$
\begin{gathered}
N^{*}(N-1) / 2 \\
O\left(N^{2}\right)
\end{gathered}
$$

(b) Complete undirected graph.

Graphs and Multigraphs

- Examples for Graph
- complete undirected graph: $n(n-1) / 2$ edges
- complete directed graph: $n(n-1)$ edges

complete graph

incomplete graph

$$
E\left(G_{1}\right)=\{(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)\}
$$

$$
E\left(G_{2}\right)=\{(0,1),(0,2),(1,3),(1,4),(2,5),(2,6)\}
$$

$$
E(G 3)=\{\langle 0,1\rangle,\langle 1,0\rangle,\langle 1,2\rangle\}
$$

Graphs and Multigraphs

$>$ Labeled Graph : A graph G is said to be labeled if its edges are assigned data.
$>$ Weighted Graph : A graph is said to be weighted if each edge e in the graph G is assigned a non-negative numerical value W (e) called the weight or cost of the edge. If an edge does not have any weight then the weight is considered as 1 .

(a)

(b)

Graphs and Multigraphs

The definition of a graph may be generalized by permitting the following:
> Multiple edges: Distinct edges e and e' are called multiple edges if they connect the same endpoints, that is, if $\mathrm{e}=[\mathrm{u}, \mathrm{v}]$ and $\mathrm{e}^{\prime}=$ [u, v].
$>$ Finite Graph: A multigraph M is said to be finite if it has a finite number of nodes and a finite number of edges.
$>$ Multigraph : If a graph has two parallel path to an edge or multiple edges along with a loop is said to be multigraph.

Example 8.1

Example 8.1

(a) Graph.
(a) Figure $8-1(a)$ is a picture of a connected graph with 5 nodes $-A, B, C, D$ and E-and 7 edges:

$$
[A, B], \quad[B, C], \quad[C, D], \quad[D, E], \quad[A, E], \quad[C, E] \quad[A, C]
$$

There are two simple paths of length 2 from B to $E:(B, A, E)$ and (B, C, E). There is only one simple path of length 2 from B to $D:(B, C, D)$. We note that (B, A, D) is not a path, since $[A, D]$ is not an edge. There are two 4 -cycles in the graph:

$$
[A, B, C, E, A] \quad \text { and } \quad[A, C, D, E, A] .
$$

Note that $\operatorname{deg}(A)=3$, since A belongs to 3 edges. Similarly, $\operatorname{deg}(C)=4$ and $\operatorname{deg}(D)=2$.

Example 8.1

(b) Figure $8-1(b)$ is not a graph but a multigraph. The reason is that it has multiple edges- $e_{4}=[B, C]$ and $e_{5}=[B, C]$-and it has a loop, $e_{6}=[D, D]$. The definition of a graph usually does not allow either multiple edges or loops.
(c) Figure $8-1(c)$ is a tree graph with $m=6$ nodes and, consequently, $m-1=5$ edges. The reader can verify that there is a unique simple path between any two nodes of the tree graph.

Example 8.1

(c) Figure $8-1(c)$ is a tree graph with $m=6$ nodes and, consequently, $m-1=5$ edges. The reader can verify that there is a unique simple path between any two nodes of the tree graph.

Example 8.1

(d) Weighted graph.
(d) Figure 8-1 (d) is the same graph as in Fig. 8-1 (a), except that now the graph is weighted. Observe that $P_{1}=(B, C, D)$ and $P_{2}=(B, A, E, D)$ are both paths from node B to node D. Although P_{2} contains more edges than P_{1}, the weight $w\left(P_{2}\right)=9$ is less than the weight $w\left(P_{1}\right)=10$.

Directed Graphs

A graph in which the edges are having direction is called directed graph or digraph, otherwise the graph is called undirected graph. Directed Graphs
A directed graph G, also called a digraph or graph is the same as a multigraph except that each edge e in G is assigned a direction, or in other words, each edge e is identified with an ordered pair (u, v) of nodes in G.

Suppose G is a directed graph with a directed edge $e=(u, v)$. Then e is also called an arc. Moreover, the following terminology is used:
(1) e begins at u and ends at v.
(2) u is the origin or initial point of e, and v is the destination or terminal point of e.
(3) u is a predecessor of v, and v is a successor or neighbor of u.
(4) u is adjacent to v, and v is adjacent to u.

Outdegree and Indegree

Degree/order: A degree of a node is the number of edges

 containing that node. The number edges pointing towards the node are called in-degree/in-order. The number edges pointing away from the node are called out-degree/out-order.
Outdegree and Indegree

Indegree: The indegree of a node u in G, written indeg (u), is the number of edges ending at u.

Indegree of $1=1 \quad$ Indegree of $2=2$
Outdegree: The outdegree of a node u in G, written outdeg (u), is the number of edges beginning at u.

Outdegree of $1=1 \quad$ Outdegree of $2=2$

Graphs and Multigraphs

> Source: A node u is called a source if it has a positive outdegree but zero indegree.
$>$ Sink: A node u is called a sink if it has a zero outdegree but a positive indegree

Simple Directed Graph

Simple Directed Graph

A directed graph G is said to be simple if G has no parallel edges. A simple graph G may have loops, but it cannot have more than one loop at a given node.

[^0]
Example 8.2

Figure $8-2$ shows a directed graph G with 4 nodes and 7 (directed) edges. The edges e_{2} and e_{3} are said to be parallel, since each begins at B and ends at A. The edge e_{7} is a loop, since it begins and ends at the same point, B. The sequence $P_{1}=(D, C, B, A)$ is not a path, since (C, B) is not an edge-that is, the direction of the edge $e_{5}=(B, C)$ does not agree with the direction of the path P_{1}. On the other hand, $P_{2}=(D, B, A)$ is a path from D to A, since (D, B) and (B, A) are edges. Thus A is reachable from D. There is no path from C to any other node, so G is not strongly connected. However, G is unilaterally connected. Note that indeg $(D)=1$ and outdeg $(D)=2$. Node C is a sink, since indeg $(C)=2$ but outdeg $(C)=0$. No node in G is a source.

Fig. 8-2

Tree

Let T be any nonempty tree graph. Suppose we choose any node R in T. Then T with this designated node R is called a rooted tree and R is called its root. Recall that there is a unique simple path from the root R to any other node in T. This defines a direction to the edges in T, so the rooted tree T may be viewed as a directed graph. Furthermore, suppose we also order the successors of each
node v in T. Then T is called an ordered rooted tree. Ordered rooted trees are nothing more than the general trees discussed in Chap. 7.

simple directed Graph

- A directed graph G is said to be simple if G has no parallel edges.
- A simple graph G may have loops, but it cannot have more than one loop at a given node.
- Our study will focus on simple directed Graph edge is a directed edge

Representation of graph

There are two standard ways of maintaining a graph G in the memory of a computer.

1. The sequential representation
2. The linked representation

Sequential Representation Of Graphs

There are two different sequential representations of a graph. They are
1.Adjacency Matrix representation
2.Path Matrix representation

Adjacency Matrix Representation

$>$ Suppose G is a simple directed graph with m nodes, and suppose the nodes of G have been ordered and are called $v_{1}, v_{2}, \ldots, v_{m}$. Then the adjacency matrix $A=\left(a_{i j}\right)$ of the graph G is the $m \times m$ matrix defined as follows:

```
    [1 if }\mp@subsup{v}{\textrm{i}}{}\mathrm{ is adjacent to }\mp@subsup{\textrm{V}}{\textrm{j}}{}\mathrm{ , that is, if there is an edge ( }\mp@subsup{\textrm{V}}{\textrm{i}}{},\mp@subsup{\textrm{V}}{\textrm{j}}{}
    aij
    0 otherwise
```

$>$ Suppose G is an undirected graph. Then the adjacency matrix A of G will be a symmetric matrix, i.e., one in which $\mathrm{a}_{\mathrm{ij}}=\mathrm{a}_{\mathrm{ij}}$, for every i and j .

Sequential Representation Of Graphs

Drawbacks

1. It may be difficult to insert and delete nodes in G .
2. If the number of edges is $\mathrm{O}(\mathrm{m})$ or $\mathrm{O}(\mathrm{m} \log 2 \mathrm{~m})$, then the matrix A will be sparse, hence a great deal of space will be wasted.

Sequential Representation Of Graphs

Sequential Representation Of Graphs

Example 8.3

Consider the graph G in following Fig. suppose the nodes are stored in memory in a linear array DATA as follows: DATA : X,Y,Z,W

We assume that the ordering of the nodes in G is as follows:
$V_{1}=X$
$V_{2}=y$
$V_{3}=\mathbf{z}$
$\mathbf{V}_{4}=\mathbf{W}$

Example 8.3

The adjacency matrix A of G is as follows :

Multigraph

The above matrix representation of a graph may be extended to multigraph.
Specifically , if G is a multigraph then the adjacency matrix of G is the $m \times m$ matrix $a=a_{i j}$ defined by setting $a_{i j}$ equal to the number of edges from V_{i} to V_{j}
Proposition 8.2: Let A be the adjacency matrix of a graph G. Then $a_{k}(i, j)$, the $i j$ entry in the matrix A^{k}, gives the number of paths of length K from v_{i} to v_{j}

Example 8.3

Ex. :- Consider the following Fig. \& calculate $A, A^{2}, A^{3} \& A^{4}$.

Example 8.3

$$
A^{2}=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
1 & 0 & 1 & 2 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1
\end{array}\right) \quad A^{3}=\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
1 & 0 & 2 & 2 \\
1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1
\end{array}\right) \quad A^{4}=\left(\begin{array}{llll}
0 & 0 & 1 & 1 \\
2 & 0 & 2 & 3 \\
1 & 0 & 1 & 2 \\
1 & 0 & 1 & 1
\end{array}\right)
$$

Accordingly, in particular, there is a path of length 2 from v_{4} to v_{1}, there are two paths of length 3 from v_{2} to v_{3}, and there are three paths of length 4 from v_{2} to v_{4}. (Here, $v_{1}=\mathrm{X}, v_{2}=\mathrm{Y}, v_{3}=\mathrm{Z}$ and $v_{4}=\mathrm{W}$.)

Suppose we now define the matrix B_{r} as follows:

$$
B_{r}=A+A^{2}+A^{3}+\cdots+A^{r}
$$

Then the $i j$ entry of the matrix B_{r} gives the number of paths of length r or less from node v_{i} to v_{j}.

Path Matrix Representation

Let G be a simple directed graph with m nodes, $v_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{m}}$. The path matrix of G is the m-square matrix $P=\left(p_{i j}\right)$ defined as follows:
$P i j=\left\{\begin{array}{l}1 \text { if there is a path from } V_{i} \text { to } V_{j} \\ 0 \text { otherwise }\end{array}\right.$

Multigraph

The above matrix representation of a graph may be extended to multigraph.
Specifically , if G is a multigraph then the adjacency matrix of G is the $m \times m$ matrix $a=a_{i j}$ defined by setting $a_{i j}$ equal to the number of edges from V_{i} to V_{j}
Proposition 8.2: Let A be the adjacency matrix of a graph G. Then $a_{k}(i, j)$, the $i j$ entry in the matrix A^{k}, gives the number of paths of length K from v_{i} to v_{j}

Example

Proposition 8.3: Let A be the adjacency matrix \& let

 $\mathrm{P}=\left(\mathrm{p}_{\mathrm{ij}}\right)$ be the path matrix of a digraph G then $\mathrm{p}_{\mathrm{ij}}=1$ if and only if there is a nonzero number in the ij entry of the matrix .$$
B_{m}=A+A^{2}+A^{3}+\ldots \ldots+A^{M}
$$

Example

Consider the graph G with $\mathrm{m}=4$ nodes in following Fig. Adding the matrices $\mathrm{A}, \mathrm{A}^{2}, \mathrm{~A}^{3}$ and A^{4} We obtain the following matrix $\mathbf{B}_{4}=\mathbf{A}+\mathbf{A}^{2}+\mathbf{A}^{\mathbf{3}}+\mathbf{A}^{4}$
And, replacing the nonzero entries in B_{4} by 1 we obtain the path matrix P of the graph G as

$$
B_{4}=\left(\begin{array}{llll}
1 & 0 & 2 & 3 \\
5 & 0 & 6 & 8 \\
3 & 0 & 3 & 5 \\
2 & 0 & 3 & 3
\end{array}\right) \quad \text { and } \quad P=\left(\begin{array}{llll}
1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1
\end{array}\right)
$$

Strongly Connected Graph

$>$ Recall that

- A directed graph is strongly connected if, for any pair of nodes u and v in G, there are both a path from u to v and also a path from v to u.

Strongly Connected Graph

Examining the above path matrix P , we found that the node v_{2} is not reachable from any of the other node. Thus the graph G is not strongly connected graph.

$$
\begin{aligned}
& \mathbf{V}_{1}=\mathbf{X} \\
& \mathbf{V}_{2}=\mathbf{y} \\
& \mathbf{V}_{3}=\mathbf{z} \\
& \mathbf{V}_{4}=\mathbf{W}
\end{aligned}
$$

تم الإنتهاء من المحاضرة

[^0]: The notions of path, simple path and cycle carry over from undirected graphs to directed graphs except that now the direction of each edge in a path (cycle) must agree with the direction of the path (cycle). A node v is said to be reachable from a node u if there is a (directed) path from u to v.

 A directed graph G is said to be connected, or strongly connected, if for each pair u, v of nodes in G there is a path from u to v and there is also a path from v to u. On the other hand, G is said to be unilaterally connected if for any pair u, v of nodes in G there is a path from u to v or a path from v to u.

