
By

Dr. Reda Elbarougy

رضا الباروجى/ د

Lecturer of computer sciences

In Mathematics Department

Faculty of Science

Damietta University

2017-04-26الاحد

رقم المحاضرة

الحالة الموضوع التاريخ م

تم الفصل الأول مقدمة 12-02-2017 1

تم الفصل الأول مقدمة 19-02-2017 2

تم الفصل الثانى اساسيات 05-03-2017 3

تم الفصل الرابع المصفوفات 12-03-2017 4

تم الفصل الرابع المصفوفات 19-03-2017 5

الفصل الخامس 26-03-2017 6

الفصل الخامس 02-04-2017 7

Stacks أضافى الفصل السادس 04-04-2017 8

الفصل السادس 09-04-2017 9

أجازة 16-04-2017

لا 19-04-2017 10

الفصل السابع 23-04-2017 11

30-04-2017 12

07-05-2017
2

Chapter 8: Graph II

3

Drawbacks of sequential representation

 Linked Representation of a graph

 Traversing a Graph

1) Breadth – First Search (DFS): preorder traversal

2) Depth – First Search (BFS): level order traversal

Chapter 8

4

5

Drawbacks of sequential representation

 Let G be a directed graph with m nodes .

 The sequential representation of G has major

drawbacks as

1) It is difficult to insert & delete nodes in G .This is

because the size of A may need to be changed & the

nodes may need changed & the nodes may need to be

reordered, so there may be many, many changes in the

matrix A.

2) If the number of edges is O(m) or O (m×log2×m), then

the matrix A will be sparse (will contain many zeros) ;

hence large memory space will be wasted .

6

Linked Representation of a graph

Graph G is also represented in memory by a linked

representation also called an adjacency structure.

 Consider the following graph G (Fig a)

 The table in fig. (b) shows each node in G followed by

its adjacency list, which is its list of adjacent nodes,

also called its successors or neighbour's.

7

Linked Representation of a graph

 The linked representation will contain two lists (or files),

a node list NODE & an edge list EDGE, as follows:

a) Node list:- Each element in the list Node will correspond

to a node in G , & it will be record of the form :

– NODE will be the name or key value of the node

– NEXT will be pointer to the first element in the adjacency list of

the node, which is maintained in the list EDGE.

– Shaded area indicated other information in the record such as

indegree, outdegree of the node.

8

Linked Representation of a graph

b) Edge list:- Each element in the list EDGE will

correspond to an Edge of G & will be a record of the

form: Where Field:

– DEST will point to the location in the list NODE of the

destination or terminal node of the edge.

– LINK will link together the edge with the same initial node,

that is, the nodes in the same adjacency list.

– Shaded area indicated the other information like weight or

label of edge

9

Linked Representation of a graph

Following Fig . shows the schematic diagram of a linked

representation of graph G in Fig(8.7 a).

10

Linked Representation of a graph

Following Fig. shows the memory representation.

11

Example 8.5

Suppose friendly airways has nine daily flights ,as follows :

103 Atlanta to Houston 301 Denver to Rene

106 Houston to Atlanta 305 Chicago to Miami

201 Boston to Chicago 308 Miami to Boston

203 Boston to Denver 402 Reno to Chicago

204 Denver to Boston

12

Example 8.5

Following Fig. shows the graph appear in memory using

the linked representation.

13

Traversing a Graph

 There are two methods for traversing a graph.

1) Breadth – First Search (DFS): preorder traversal

2) Depth – First Search (BFS): level order

traversal

 The BFS uses a queue as an auxiliary structure to hold

nodes for future processing & the DFS uses stacks.

 During the execution of algorithm, each node N of G

will be in one of three states, called the status of N as

follows.

14

Traversing a Graph

 STATUS =1 : (Ready state)

The initial state of the node N.

 STATUS =2 : (Waiting state)

The node N is on the queue or stack , waiting to be

processed.

 STATUS =3: (Processed State) The node N has been

processed.

15

1) Breadth – First Search

The general idea behind a breadth first search beginning

as a staring node A is as follows.

 First we check the starting node A.

 Then we check all the neighbours of A.

 Then we check all the neighbours of the neighbours of

A and so on.

 In this way we need to keep track of the neighbours of

a node, and we need to guarantee that no node is

processed more than once.

 This is accomplished by using queue to hold nodes that

are waiting to be processed. And using a field STATUS

which tells us the current status of any node.

16

1) Breadth – First Search

Algorithm BFS:- This algorithm executes a breadth- first search on a

graph G beginning at a starting node A.

1.Initialize all nodes to the ready state (STATUS =1).

2.Put the starting node A in QUEUE & change its status to the

waiting state (STATUS = 2).

3.Repeat steps 4 & 5 until QUEUE is empty:

4.Remove the front node N of QUEUE.

Process N & change the status of N to the processed state

(STATUS =3) .

5.Add to the rear of QUEUE all the neighbors of N that are in the

ready state (STATUS = 1), and change their status to the waiting

state (STATUS = 2) .

[End of Step 3 Loop .]

6.Exit.

17

Example 8.7

Consider the following graph G in following Fig. Suppose G

represents the daily flights between cities of some airline and suppose

we want to fly from city A to city J with minimum number of stops.

In other words, we want the minimum path P from A to J. (Where

each edge has length 1).

18

Example 8.7

 The minimum path P can be found by using a Breadth-

First-search beginning at city A & ending when J is

encountered.

 During the execution of the search, we will also keep

track of the origin of each edge by using an array

ORIG together with the array QUEUE.

 The steps of search is as follows:

19

Example 8.7

a) Initially, add A to QUEUE & add NULL to ORIG as

follows:

FRONT =1 QUEUE : A

REAR = 1 ORIG : ɸ

A
Front =1

Rear = 1

1 2 3 4 5 6 7 8

F R

20

Example 8.7

b) Remove the front element A from QUEUE by setting

FRONT := FRONT + 1, & add to QUEUE the neighbors of A as

follows.

FRONT = 2 QUEUE : A, F, C, B

REAR = 4 ORIG : ɸ, A, A, A

A F C B
Front = 2

Rear = 4

1 2 3 4 5 6 7 8

F R

21

Example 8.7

c) Remove the front element F from QUEUE by setting

FRONT := FRONT + 1, & add to QUEUE the neighbors of F

as follows.

FRONT = 3 QUEUE : A, F, C, B, D

REAR = 5 ORIG : ɸ, A, A, A, F

A F C B D
Front = 3

Rear = 5

1 2 3 4 5 6 7 8

F R

22

Example 8.7

d) Remove the front element C from QUEUE , & add to

QUEUE the neighbors of C as follows.

FRONT = 4 QUEUE : A, F, C, B, D

REAR = 5 ORIG : ɸ, A, A, A, F

Note that the neighbors of C i.e. F is not added to QUEUE, since F is not in the

ready state (because F is already been added to QUEUE)

A F C B D
Front = 4

Rear = 5

1 2 3 4 5 6 7 8

F R

23

Example 8.7

e) Remove the front element B from QUEUE , & add to

QUEUE the neighbors of B as follows.

FRONT = 5 QUEUE : A, F, C, B, D, G

REAR = 6 ORIG : ɸ, A, A, A, F, B

Note that only G is added to QUEUE, since the other neighbor, C is not

in the ready state. (i.e. it is already added to QUEUE.)

A F C B D G
Front = 5

Rear = 6

1 2 3 4 5 6 7 8

F R

24

Example 8.7

f) Remove the front element D from QUEUE , & add to

QUEUE the neighbors of D as follows.

FRONT = 6 QUEUE :A, F, C, B, D, G

REAR = 6 ORIG :ɸ, A, A, A, F, B

A F C B D G

1 2 3 4 5 6 7 8
Front = 6

Rear = 6

F R

25

Example 8.7

g) Remove the front element G from QUEUE , & add

to QUEUE the neighbors of G as follows.

FRONT = 7 QUEUE : A, F, C, B, D, G, E

REAR = 7 ORIG : ɸ, A, A, A, F, B, G

A F C B D G E
Front = 7

Rear = 7

1 2 3 4 5 6 7 8

F R

26

Example 8.7

h) Remove the front element E from QUEUE , & add to

QUEUE the neighbors of E as follows.

FRONT = 8 QUEUE : A, F, C, B, D, G, E, J

REAR = 8 ORIG : ɸ, A, A, A, F, B, G, E

A F C B D G E J
Front = 8

Rear = 8

1 2 3 4 5 6 7 8

F R

27

Example 8.7

 We stop as soon as J is added to QUEUE, since J is our

final destination.

 We now backtrack from J, using the array ORIG to final the

path P.

 Thus We obtain J E G B A Is the required path P.

28

2) Depth – First Search

The idea behind a depth-first search beginning at a starting

node A is as follows.

 First we examine the starting node A.

 Then we examine each node N along a path P which

begins at A; that is, we process a neighbor of A, and so on.

 After coming to “Dead End” that is, to the end of the path

p, we backtrack on P until we can continue along another,

path P1 and so on. (This algorithm is similarly to inorder

traversal of a binary tree.)

 This algorithm is similar to BFS except here we use stack

instead of the queue. Also, a field STATUS is used to tell

us the current status of a node.

29

2) Depth – First Search

Algorithm DFS :- This algorithm executes a depth-first search

on a graph G beginning at a starting node A .

1.Initialize all nodes to the ready state (STATUS =1).

2.Push the starting node A onto STACK & change its status to

the waiting state (STATUS = 2).

3.Repeat steps 4 and 5 until STACK is empty :

4. Pop the top node N of STACK.

Process N and change its status to the processed state

(STATUS = 3).

5. PUSH onto STACK all neighbors of N that are still in

the ready state (STATUS = 1), and change their status to

the waiting state (STATUS = 2) .

[End of Step 3 Loop .]

6. Exit.

30

Example 8.8

Consider the following graph G in the following figure.

Suppose we want to find and print all the nodes

reachable from the node J (Including J itself).

One way to do this is to use a depth-first search of G

starting at the node J.

31

The steps of DFS is as follows :

a) Initially, Push J onto the stack as follows :

STACK : J

Stack

J Top

32

The steps of DFS is as follows :

b) Pop and print the top element J , & then Push onto stack all

the neighbors of J (Those that are in the ready state) as follows:

Print J STACK : D, K

Stack

D

TopK

33

The steps of DFS is as follows :

Stack

D

TopG

c) Pop & Print the top element K , & Push onto the stack all the

neighbors of K (Those that are in the ready state) as follows:

Print K STACK : D , E , G

E

34

The steps of DFS is as follows :

Stack

D

TopC

d) Pop & print the top element G , & then push onto the

stack all the neighbors of G (Those in the ready state)

Print G STACK : D , E , C

E

Note that only C is pushed onto the stack, since the other neighbour, E is not

in the ready state (because E has already been pushed onto stack)

35

The steps of DFS is as follows :

Stack

D

TopF

e) Pop & print the top element C, & then push onto the stack

all the neighbors of C (Those in ready state) as follows :

Print C STACK : D , E , F

E

36

The steps of DFS is as follows :

Stack

D

TopE

f) Pop & print the top element F , & then Push onto stack all the

neighbors of F(Those that are in the ready state) as follows :

Print F STACK : D, E

Note that only D of F is not pushed onto the stack, since D is not in the ready

state (because D has already been pushed onto stack)

37

The steps of DFS is as follows :

Stack

TopD

g) Pop & Print the top element E , & Push onto the stack all the

neighbors of E (Those in the ready state) as follows :

Print E STACK : D

(Note that none of the three neighbours of E is in the ready state)

38

The steps of DFS is as follows :

Stack

Top

h) Pop & print the top element D , & push onto the stack all the

neighbors of D (Those in the ready state) as follows

Print D STACK :

39

The steps of DFS is as follows :

The stack is now empty , so the depth-first search of G starting

at J is now complete.

Accordingly , the nodes which were printed

J , K , G , C , F , E , D

Are the nodes which are reachable from J.

المحاضرةتم الإنتهاء من

