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Modeling of nonlinear envelope solitons in strongly coupled dusty
plasmas: Instability and collision
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Modeling of instability and collision of nonlinear dust-acoustic (NDA) envelope solitons in strongly coupled dusty
plasmas (SCDPs) is theoretically investigated. The SCDPs consists of strongly correlated negatively variable-charged dust
grains and weakly correlated Boltzmann electrons and ions. Using the derivative expansion perturbation technique, a non-
linear Schrödinger-type (NLST) equation for describing the propagation of NDA envelope solitons is derived. Moreover,
the extended Poincaré–Lighthill–Kuo (EPLK) method is employed to deduce the analytical phase shifts and the trajectories
after the collision of NDA envelope solitons. In detail, the results show that both modulation instability and phase shift after
collision of NDA envelope solitons will modify with the increase in the effects of the viscosity, the relaxation time, and the
dust charge fluctuation. Crucially, the modeling of dust-acoustic envelope solitons collision, as reported here, is helpful for
understanding the propagation of NDA envelope solitons in strongly coupled dusty plasmas.
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1. Introduction
At the present time, there is a great deal of interest in per-

ception the physics of dusty plasmas (containing besides elec-
trons and ions also charged microparticles) because of their
vital role in understanding the properties of different collec-
tive processes in space and laboratory dusty plasmas.[1–3] It is
well known that nonlinear dust-acoustic NDA wave represents
one of the important aspects of nonlinear waves in modern
dusty plasma researches. Actually, one of the most interesting
characteristics of a dusty plasma is the dust charge fluctua-
tion which enters as an extra dynamical variable controlling
the dust grain motion.[4] A great number of investigators[5–7]

were studied the modification of the dusty plasma collective
properties due to including the dust charge variation. For
example, Xie et al.[5] derived dust-acoustic wave with vary-
ing dust charge and they showed that only rarefactive solitary
waves exist when the Mach number lies within an appropri-
ate regime, depending on the system parameters. On the other
side, because of the large charges on the individual dust par-
ticles, the dust components in a plasma can be easily in the
strongly coupled regime where the electrostatic energy of dust
particle interactions greatly exceeds the dust kinetic energy.[8]

Theoretically, Ikezi[9] first pointed out that the Coulomb crys-
tallization of charged dust grains interacting via a repulsive
Yukawa force in a plasma, when the Coulomb coupling pa-
rameter Γ [the ratio between the coulomb interaction energy

density and the dust thermal energy Td] exceeds 171. Clearly,
large Γ at room temperature is achieved when dust grains ac-
quire tens of thousands electrons on their surface. This theo-
retical prediction was verified experimentally with the obser-
vations of Thomas et al.[10] It is well known that, there are
two regimes in the generalized hydrodynamic model: i) the
hydrodynamic regime (i.e., ωτm� 1) and ii) kinetic regime
(i.e., ωτm� 1), where τm is the memory (viscoelastic) relax-
ation time and ω−1 is the typical time scale of the wave under
consideration.[11] On one hand, for the hydrodynamic regime,
the viscoelastic relaxation is instantaneous, and one has the
usual hydrodynamic equation. In this case dust grains sup-
port only the longitudinal dust acoustic wave (LDAW), which
suffers only viscous dissipation. On the other hand, for the ki-
netic regime, the viscoelastic relaxation is not instantaneous,
and the dusty plasma supports both LDAW as well as the trans-
verse shear wave.[7,12]

In last few years, there have been a few theoretical investi-
gations of dust-acoustic wave, double layer, and dust acoustic
shock wave in strongly coupled dusty plasmas (SCDPs).[13–19]

For instance, Mamun and Cairns[16] have studied low fre-
quency electrostatic dust modes in SCDPs including dust
charge fluctuations. They found that the dust-acoustic wave
mode becomes unstable due to the effect of equilibrium dust
grain charge inhomogeneity. In addition, they observed that
the influence of strong correlations in the dust fluid signifi-
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cantly modify the dispersion properties of the existing dust-
acoustic wave mode. Recently, Rahman and Mamun[18] have
investigated a SCDP containing strongly correlated negatively
charged dust grains and weakly correlated adiabatic effects.
They demonstrated that both the dust-acoustic wave and the
dust acoustic shock wave are found to exist with negative po-
tential only[18] Furthermore, the effects of a modulational in-
stability (MI) of nonlinear wave in SCDPs have not investi-
gated enough.[20] Moreover, Veeresha et al.[8] reported that
the dust-acoustic wave can suffer a MI at short wavelengths
such that a slow parallel modulation of a finite amplitude
monochromatic plane wave and in some limits lead to the
formation of an envelope soliton pulse. Additionally, they[8]

have demonstrated that the effective dust temperature and the
effects of polarization force, respectively, are very important
to illustrate various characteristics of the dust-acoustic wave
propagation in many space and laboratory dusty plasma situ-
ations. Very recently, El-Labany et al.[21] examined the MI
of the modulated dust acoustic envelope solitons in SCDPs in-
cluding the polarization force effect only. They demonstrated
that as the effect of polarization force increases, both the an-
gular frequency and the group velocity of the dust acoustic
envelope solitons decrease.

Presently, in the process of soliton propagation in SCDPs,
wave–wave collision has attracted more and more attention in
modern plasma researches. Actually, one of the striking prop-
erties of solitons is their asymptotic preservation of form when
they undergo a collision.[22] The unique effects due to the col-
lision are their phase shifts and trajectories. Many authors
have investigated the collision of two solitary waves in var-
ious plasma models using the extended Poincare–Lighthill–
Kuo (EPLK) method.[23–27] The EPLK method has been em-
ployed to study wave–wave collision in dusty plasmas.[28,31]

For example, Xue[28,29] demonstrated that the dust charge fluc-
tuation and the magnitude of the magnetic field have strong
effects on the phase shifts. Later, Li et al.[30] illuminated
that the value of phase shift increases as the angle between
the propagation directions of the two dust acoustic solitary
waves increases. Recently, El-Labany et al.[31] stated that the
oblique collision strongly affects the trajectories of dust acous-
tic solitary waves after collision. In addition, very recently,
El-Labany et al.[21] have firstly addressed the head on colli-
sion of two modulated dust acoustic envelope dark solitons
in the hydrodynamic regime in SCDPs through the nonlinear
Schrödinger equation framework. They[21] showed that the
phase shifts for the dark solitons increase as the effect of polar-
ization force decreases. Up to now, the collision of two NDA
envelope solitons in the kinetic regime of SCDPs has not been
performed. Furthermore, particular questions to be answered
are: how do MI, angular frequency, group velocity, and the
collision of the NDA envelope solitons are influenced by the
incorporated new effects; the viscosity, the relaxation time and

the dust charge fluctuation. Therefore, it is expected that the
answers of these questions will lead to a significant improve-
ment for understanding nonlinear wave collision observed in
SCDPs experiments.

This paper is organized in the follows: In Section 2,
the basic equations for describing NDA envelope solitons in
SCDPs within the kinetic regime are introduced. In Section 3,
the derivative expansion technique is used to derive a nonlinear
Schrödinger-type (NLST) equation, then studying MI of NDA
envelope solitons in various regions of the physical parame-
ters involved. In Section 4 using the EPLK method, the ana-
lytical phase shifts and the trajectories after the collision are
deduced, and the collision between two NDA envelope dark
solitons is discussed. Based on physical parameters, Section 5
is devoted to show numerical illustrations and the discussion
of the present findings. Section 6 is devoted to concluding re-
marks.

2. Govern equations
Let us consider SCDPs consisting of negatively variable-

charged dust grains, electrons, and ions. The electrons and the
ions are considered weakly coupled due to their higher temper-
atures and smaller electric charges, while the dust grains are
assumed to be strongly coupled because of their low tempera-
ture and large electric charges. The charge neutrality condition
reads Zd0nd0 +ne0 = ni0, where ne0, ni0, and nd0 are the unper-
turbed number densities of electrons, ions, and dust grains,
respectively, and Zd0 is the unperturbed number of electrons
residing on the dust grain surface. Owing to the low phase ve-
locity of dust acoustic waves (in comparison with electron and
ion thermal velocities), the electrons and the ions are assumed
to behave as light fluids compared to the dust fluid and model
them by Boltzmann distribution

ne = ne0 exp
(

eϕ

Te

)
, (1)

ni = ni0 exp
(
−eϕ

Ti

)
. (2)

The set of equations describing the proposed SCDPs fluid in
kinetic regime is governed by[17,19]

∂nd

∂ t
+

∂ (udnd)

∂x
= 0, (3)

Dτ

[
ndmdDtud− endZd

∂ϕ

∂x

+endZdR
(

ni

ni0

)1/2
∂ϕ

∂x
+Tef

∂nd

∂x

]
−ηl

∂ 2ud

∂x2 = 0, (4)

∂ 2ϕ

∂x2 = 4πe [ne +ndZd−ni] , (5)

where nd is the dust number density, ud is the dust fluid speed,
ϕ is the electric potential. t and x are the time and the space
variables, respectively. The third term on the left-hand side
of Eq. (4) is due to the polarization force, which arises due
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to the interaction between thermal ions and highly negatively
charged dust grains, one can defined the polarization force
as Fp =−eZdR(ni/ni0)

1/2
∇ϕ , where R

(
= Zde2/4λDi0T i

)
is

a parameter determining the effect of polarization force, and
λDi0 = (Ti/4πni0e2)

1/2. Ti(e) is the ion (electron) temperature
in energy unit, ni(e) is the ion (electron) number density, Zd

is the number of electrons residing on the dust grain surface,
and e is the magnitude of the electron charge. The fourth term
represents the pressure force, and the fifth term is the viscosity
force, which is introduced by taking the kinematic viscosity
among the plasma constituents into account. md is the dust
grain mass, Tef= (Tdµd +T∗) is the effective dust temperature
consisting of two parts: T∗ arising from the electrostatic inter-
actions among highly negatively variable-charged dust grains
and Tdµd arising from thermal pressure and

Dτ= 1+τm
∂

∂ t
, Dt=

∂

∂ t
+ud

∂

∂x
,

where τm is the viscoelastic relaxation time, µd is the com-
pressibility, and ηl is the longitudinal viscosity coefficient.
The parameters T∗, τm, and µd are given by[32]

T∗ =
Nnn

3
e2Z2

d

ad
(1+κ)e−κ ,

τm =
ηl

nd0Td

[
1−µd +

4
15u(Γ )

]−1

,

µd =
1
Td

∂ pd

∂nd
= 1+

1
3

u(Γ )+
Γ

9
∂u(Γ )

∂Γ
,

where Nnn is determined by the dust structure and cor-
responds to the number of the nearest neighbors, Γ =(
q2

d/adTd
)

exp(κ), κ [= ad/λD] is the screening parameter,
and u(Γ ) is a measure of the excess internal energy, qd is the
dust grain charge, ad is the intergrain distance, Td is the dust
temperature in the energy unit, and λD is the dusty plasma De-
bye radius. In fact, u(Γ ) can be written as: u(Γ )= a(k)Γ +

b(k)Γ 1/3+c(k)+d (k)Γ−1/3. For a Yukawa fluid, the coeffi-
cients up to order k4 are given by

a(k) = k/2−0.899−0.103k2+0.003k4,

b(k)= 0.565−0.026k2−0.003k4,

c(k) =−0.207−0.086k2+0.018k4,

d (k)=−0.031+0.042k2−0.008k4.

It is well known that the dust grains are negatively charged due
to plasma electron current

Ie=−eπr2
d (8Te/πme)

1/2 ne exp(eqd/rdTe) ,

and ion current

Ii= eπr2
d (8Ti/πmi)

1/2 ni (1−eqd/rdTi) ,

and the charges on the dust grains varies continuously with
time. The varying dust charge qd is governed by the current

balance equation[33](
∂

∂ t
+ud

∂

∂x

)
qd = Ie+Ii. (6)

Now, let us write the normalized set of equations for SCDPs
fluid as follows:

∂nd

∂ t
+

∂ (ndud)

∂x
= 0, (7)(

1+τm
∂

∂ t

)[
nd

∂ud

∂ t
+ndud

∂ud

∂x
−ndZd

∂ϕ

∂x

+Z2
dR
(

ni

µi

)1/2

nd
∂ϕ

∂x
+γ

∂nd

∂x

]
−ηl

∂ 2ud

∂x2 = 0, (8)

∂ 2ϕ

∂x2 = Zdnd +µe exp(σϕ)−µi exp(−ϕ) , (9)(
∂

∂ t
+ud

∂

∂x

)
Qd = Ie+Ii, (10)

where the normalized electron current and normalized ion cur-
rent are given by

Ie=−exp [σ (ϕ +ψ)] ,

Ii = α1δ exp(−ϕ)(1−ψ) . (11)

Here, the variables ne, ni, and nd are normalized by Zd0nd0,
Zd0nd0, and nd0, respectively, ud by λDωpd, ϕ by Ti/e, t by
ω
−1
pd , x by λD, τm by ω

−1
pd , η by mdnd0ωpdλ 2

D, and Ie and Ii

by er2
d
√

8πT e/me, where ψ (= eΦ/Ti) denotes the normalized
dust grain surface potential relative to the plasma potential ϕ .
At equilibrium Ie + Ii ≈ 0, with the aid of Eq. (11), one can
write Eq. (6) as

α1δ exp(−ϕ)(1−ψ)− exp [σ(ϕ +ψ)] = 0. (12)

The dust charge is defined by qd = −eZd = rdΦ= rdTiψ/e;
accordingly the normalized dust charges Zd= ψ/ψ0 where
ψ0 = ψ at ϕ = 0) is the surface floating potential with re-
spect to the unperturbed plasma potential at an infinite place,
which can be calculated from α1δ (1−ψ0)− exp(σψ0) = 0.
Let us introduce the following notations: The dust plasma fre-

quency ωpd =

√
4π(Zd0e)2nd0/md, the plasma Debye length

λD =
√

Ti/4πZd0nd0e2, α1 =
√

σme/mi =
√

σ/µie, µie =

mi/me, δ =µi/µe, σ =Ti/Te, µe = ne0/Zd0nd0, µi =

ni0/Zd0nd0, γ =Tef/Ti, cd =
√

Zd0Ti/md.

3. Derivation of the NLST equation
To examine the propagation of NDA envelope solitons

in the proposed SCDPs, we analyze the outgoing solutions of
Eqs. (7)–(12) by introducing the stretched coordinates[34]

ξ = 𝜖(x−λ t) , τ =𝜖2t,

η =𝜖1/4
η , τm = 𝜖1/4

τm, (13)
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where 𝜖 is a small (real) parameter and λ is the envelop group
velocity to be determined later. The dependent variables are
expanded as

G(x, t) = G0 +
∞

∑
n=1

𝜖n
∞

∑
L=−∞

Gn
L(ξ ,τ)exp(iLΘ) , (14)

where G(m)
L =

[
n(n)dL

u(n)dL
ϕ
(n)
L Z(n)

dL

]
, G(0)

L = [1001], and Θ =

kx−ωt. Here k and ω are real variables representing the fun-
damental (carrier) wave number and frequency, respectively.
Since G(m)

L must be real, the coefficients in Eq. (14) have to
satisfy the conditions G(m)

−L = G∗(m)
L , where the asterisk indi-

cates the complex conjugate. Substituting Eqs. (13) and (14)
into Eqs. (7)–(12) and collecting terms of the same powers of
𝜖. The first order (n = 1) equations read

−ωLn(1)d +kLu(1)d = 0, (15)

(−ω
2
τm + k2

ηl)L2u
(1)
d +ωkτmL2 (R−1)ϕ

(1)

+ωkτmL2
µdγ∗n

(1)
d = 0, (16)

Z(1)
d = g1ϕ

(1), (17)

−
(
α+k2)

ϕ
(1) = n(1)d +Z(1)

d . (18)

The L = 1 (first harmonic) components lead to

n(1)d1 =−
(
α+k2 +g1

)
ϕ
(1)
1 ,

Z(1)
d1 = g1ϕ

(1)
1 ,

u(1)d1 =−ω

k
(α + k2 +g1)ϕ

(1)
1 , (19)

where

α =µeσi +µi, g1 =−
(1−Ψ0)(1+σ)

Ψ0[1+σ (1−Ψ0)]
,

with the neutrality condition µi= 1+µe. Moreover, in this or-
der, we can derive the linear dispersion relation as

ω
2 = k2

[
ηl

τm
+µdγ∗+

1−R
α1 + k2 +g1

]
. (20)

This dispersion relation coincides exactly with that de-
rived by El-Taibany and Kourakis,[6] upon omitting the non-
thermality a = 0 (a is the nonthermal parameter introduced in
their work)[6] and neglecting the viscosity ηl and the polariza-
tion effect. In addition, it agrees with the expression derived
by Veeresha et al.[8] for the dust acoustic mode in SCDPs in
short wavelength regime with R and ηl equal zero. On the
other side, if we return back to the hydrodynamic regime (ig-
noring dust charge variation) ωτm� 1, equation (20) agrees
exactly with the form of Amin et al.[35] by setting (R =γ∗ =

ηl= θ = 0); (θ is introduced in the work of Amin et al.[35]).
Ignoring the dust charging fluctuation, by setting g1 = 0, and
with ηl = 0, this dispersion relation coincide with that derived

in El-Labany et al.[21] Moreover, the group velocity λ is given
by

λ =
∂ω

∂k
=

k
ω

[
ηl

τm
+µdγ∗+

α (1−R)

(α1 + k2 +g1)
2

]
. (21)

Furthermore, from the (L = 1) component of the third-order
equations (n = 3), and after some algebraic manipulation,
we obtain the following nonlinear Schrödinger-type (NLST)
equation for the NDA envelope solitons as[36]

i
∂Ψ

∂τ
+P

∂ 2Ψ

∂ξ 2 +Q|Ψ |2Ψ +HΨ = 0. (22)

In Appendix A, we derive Eq. (22). For simplicity, we have
denoted ϕ

(1)
1 ≡Ψ . Here, P, Q, and H are the dispersion coeffi-

cient, the nonlinear coefficient, and the damping term, respec-
tively.

It is noticed here, as well-known, if PQ > 0, the modu-
lated envelop is “unstable” for k <

√
2Q/Pϕ0; i.e., for per-

turbation wavelengths larger than a critical value. Otherwise,
if PQ < 0, the modulated envelope becomes “stable” against
external perturbation. In other words, for “positive” PQ, the
carrier wave is modulationally “unstable”; it may either “col-
lapse”, due to (possibly random) external perturbations, or
lead to the formation of “bright” envelope modulated wave
packets, i.e., localized envelope “pulses” confining the carrier
wave. The instability usually saturates by the formation of a
train of envelop pulses, the so-called bright solitons. The latter
can be stationary in time, but the system also oscillates period-
ically back and forth between the soliton state and an almost
homogeneous state, usually referred to as the Fermi–Pasta–
Ulam. For PQ < 0, the carrier wave modullationally “stable”
and may propagate in the form of a “dark” (“black”) envelope
wave packet, i.e., a propagating localized “hole” (a “void”)
amidst a uniform wave energy region. Here, the wave train
is stable to the MI and the wave train will not fall apart into
a train of solitons. Thus there exist dark solitons, which are
local depletions of the amplitude, while the amplitude of the
wave train remains stable on both sides of the solitons. Thus,
in the following section, it is worthwhile to investigate the in-
teraction of the two NDA envelope dark solitons.

4. The collision of NDA envelope dark solitons
It is well known that the most interesting feature of dark

solitions is their threshold generations. Therefore, dark soli-
tons can be created by an arbitrary small dip on a continuous
wave background. In this section, we try to describe the inter-
action of two NDA envelope dark solitons in the kinetic regime
of SCDPs using the EPLK perturbation method.[24–27] Firstly,
we assume two NDA envelope dark solitons, one of which is
traveling to the right, and the other one is going to the left.
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After some time they interact, collide, and then depart. Sec-
ondly, the analytical solution of the NLST Eq. (22) of equal
small amplitudes can be written as[37,38]

ϕ
(1)
1 (τ,ξ ) = ϕ0 [1+a(τ,ξ )]

× exp
[
2iϕ2

0 t + iφ (τ,ξ )
]
, (23)

where ϕ0 an arbitrary constant represents the amplitude of the
background far from the dark soliton of amplitude a(τ,ξ )�
ϕ0,[39] and φ (τ,ξ ) is the phase function contributed from the
excitation which is assumed to be a function of τ and ξ . Sub-
stituting Eq. (23) into Eq. (22), we obtain the following two
equations:

aτ+2Paξ φξ+P(1+a)φξ ξ= 0, (24)

−(1+a)φτ+P
(

aξ ξ − (1+a)φ
2
ξ

)
+Qϕ

2
0
(
3a2 +a3)+Qϕ

2
0 (1+3a)

−2ϕ
2
0 (1+a)+H (1+a)= 0. (25)

The following asymptotic expansions are used to obtain the
NDA envelope dark solitons solutions of Eqs. (24) and (25)

φ (τ,ξ )= εφ
(0) (τ,ξ )+ ε

3
φ
(1) (τ,ξ )+ · · ·, (26)

a(τ,ξ ) = ε
2a(0) (τ,ξ )+ ε

4a(1) (τ,ξ )+ · · ·, (27)

where ε is a small parameter characterizing the strength of
nonlinearity. We assume that a( j) and φ ( j) ( j = 1,2, . . .)
are functions of the multiple-scale variables, which are given
by[38]

ζ =ε (ξ−cRτ)+ ε
2P(0) (η)+ ε

4P(1) (ζ ,η)+ · · ·, (28)

η =ε (ξ+cLτ)+ ε
2Q(0) (ζ )+ ε

4Q(1) (ζ ,η)+ · · ·, (29)

referring in ζ and η to a right- and to a left-propagating dark
soliton, SR and SL, respectively. The wave speed cR and cL are
to be related to the amplitudes of the waves. The functions P( j)

and Q( j) ( j = 0,1,2, . . .) are to be determined in the process of
our solution of Eqs. (24) and (25). The aim of introducing
these functions is to make a uniformly valid asymptotic ex-
pansion (i.e., to eliminate secular terms) and at the same time
obtain the change of the trajectories (i.e., phase shifts) of the
NDA envelope dark solitons after collision. Now, let us intro-
duce the asymptotic expansion

cR= c+ε
2R(1)+ ε

4R(2)+ · · ·, (30)

cL= c+ε
2L(1)+ ε

4L(2)+ · · ·. (31)

Putting Eqs. (26)–(29) into Eqs. (24) and (25), we obtain

a(0) = fR (ζ )+ fL (η) , (32)

φ
(0) =

√
2ϕ2

0−3Qϕ2
0−H

P

(∫
fR (ζ )−

∫
fL(η)

)
. (33)

We can calculate the local wave speed as c =√
P(2ϕ2

0−3Qϕ2
0−H). Clearly, we have two waves, one of

them, fR (ξ ), is traveling to the right, and the other one, fL (η),
is going to the left.

To the next higher-order, the solvability conditions for
a(1)and ϕ(1) give

h1R(1) ∂ fR(ζ )

∂ζ
−h2 fR (ζ )

∂ fR (ζ )

∂ζ
−h3

∂ 3 fR (ζ )

∂ζ 3 = 0, (34)

−h1L(1) ∂ fL (η)

∂η
+h2 fL (η)

∂ fL (η)

∂η
+h3

∂ 3 fL (η)

∂η3 = 0, (35)

∂P(0)

∂η
=

h5

h4
fL (η) , (36)

∂Q(0)

∂ξ
=

h5

h4
fR (ζ ) , (37)

where

R(1) =
h2

3h1
ϕR, L(1) =

h2

3h1
ϕL,

h1 = 2
(
2ϕ

2
0−3Qϕ

2
0−H

)
,

h2 = [P(2ϕ
2
0−3Qϕ

2
0 −H)3]1/2

−6Qϕ
2
0

√
P
(
2ϕ2

0−3Qϕ2
0−H

)
,

h3 = −P3/2
√(

2ϕ2
0−3Qϕ2

0−H
)
,

h4 = 4[P(2ϕ
2
0−3Qϕ

2
0 −H)3]1/2,

h5 = 3[P(2ϕ
2
0−3Qϕ

2
0 −H)3]1/2

+6Qϕ
2
0

√
P(2ϕ2

0−3Qϕ2
0 −H).

Equations (34) and (35) are the two-side traveling wave
Korteweg–de Vries (KdV) equations in the reference frames
of ξ and η , the one-soliton solutions of Eqs. (34) and (35), are
given by[40]

fR (ζ ) = ϕRsech2
(√

ϕRh2ζ/12h3

)
, (38)

fL (η) = ϕLsech2
(√

ϕLh2η/12h3

)
, (39)

where ϕR and ϕL are the initial amplitudes of the two NDA
envelope dark solitons SR and SL in their initial positions.
Moreover, after some algebraic steps, one can obtain the cor-
responding phase shifts.[40,41] Details are given in Appendix
B, that is

∆P0=−2ε
2 h5

h4

(
12h3ϕL

h2

)1/2

, (40)

∆Q0= 2ε
2 h5

h4

(
12h3ϕR

h2

)1/2

. (41)

5. Discussion
Before going to the discussion, it should be mentioned

here that, the numerical values of the physical parameters are
selected based on actual experimental data as follows:[17,42]

ne0= 4×107 cm−3, ni0= 7×107 cm−3, Ti = 0.1 eV,
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Te= 1 eV, Td= 0.03 eV, R = 0–1, Zd0= 3×103.

Furthermore, under the condition ωτm � 1 (i.e., the kinetic
regime), ηl is a finite quantity, which makes the transition
from the fluid to the solid state. This means, physically,
that correlation energies of dust particles change due to a
change in the order of the arrangement of the dust parti-
cles with increased correlation effect. Accordingly, the vis-
cosity force represented by ηl(∂

2ud/∂x2) plays in this case
the role of a restoring force rather than a dissipative one.[21]
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Fig. 1. (color online) Variation of ω against the wave number k for
different values of viscosity coefficient ηl with R = 0.2 (a) and the re-
laxation time τm with R = 0.4 (b).
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Fig. 2. (color online) Variation of the group velocity λ against the wave
number k for different values of ηl with R = 0.2 (a) and τm with R = 0.4 (b).
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We can summarize the effects of these new physical parame-
ters on the MI and collision of NDA envelope solitons as fol-
lows. Figure 1 shows that ω increases as ηl or k increases
though it decreases as τm increases. On the contrary, we have
found that λ (decreases) increases as (either k or τm) ηl in-
creases, (cf., Fig. 2). Figure 3 demonstrates the contour plot of
the product PQ in the k–R domain. It illustrates two specific
stable regimes for the NDA envelope solitons; in between an
unstable regime is created. The middle (unstable regime is lo-
cated insides the two contours denoted by “0”. Figures 4–6
illustrate the contour plots of the product PQ against includ-
ing dust charge variation, ηl, and τm, respectively. These il-
lustrations reveal that including the dust charging fluctuations
leads to an expansion of the stable regime of the NDA enve-
lope solitons by shifting the critical wavenumber boundary to
a higher value. However, increasing the longitudinal viscosity
(relaxation time), ηl (τm) leads to a reduction (an expansion)

of the stable domain for NDA envelope dark solitons, respec-
tively. In all cases, for large wavelength limit seems to predict
stability, as physically expected. Let us now interpret the de-
pendence of the NDA envelope dark solitons phase shifts and
trajectories, released after collision occurred, on the system
physical parameter variations. Cleary, the magnitude of the
phase shift depends on the initial amplitudes of NDA envelope
dark solitons with large amplitudes causing large phase shifts
(see. Eqs. (40) and (41)). Furthermore, dark soliton SR is trav-
eling to the right and dark soliton SL is going to the left, we see
from Eqs. (40) and (41) that due to collision, each dark soliton
has a negative phase shift in its traveling direction. Physical
interpretation for a negative phase shift phenomenon is that
during the colliding process, two NDA envelope dark solitons
decrease their velocities, which lead to change in their trajec-
tories after collision stage.
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Fig. 5. (color online) The contour plots of the product “PQ” in the k–R domain are presented for R = 0.2.
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Fig. 6. (color online) The contour plots of the product “PQ” in the k–R domain are presented for R = 0.2.
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Figure 7 demonstrates the numerical simulation result of
the amplitude a(τ,ξ ) of the two NDA envelope dark solitons
against the space coordinate ξ and the time variable τ is rep-
resented in. It shows that after the collision, the two NDA en-
velope dark solitons propagate along the trajectories deviated
from the initial trajectories, which is the phase shift. Figures 8
and 9, respectively, show how ηl and τm affect the profile of
the two NDA envelope dark solitons against the space coor-
dinate ξ and the time variable τ . It is obvious that the phase
shift increases with increasing either ηl or τm. Therefore, the
phase shifts for NDA envelope dark solitons depend directly
on ηl and τm. Figure 10 represents the variation of the phase
shift ∆Q0 with k for various values of R in two cases: with
and without dust charge fluctuation. The figure points out that
the phase shift ∆Q0 increases as R decreases. Owing to the in-
clusion of the charge fluctuation in our model, the magnitude

of phases shift ∆Q0 increases. The point to be stressed here
is that, the dust charge fluctuation has a strong effect on the
phase shift.
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Fig. 7. (color online) The colliding process of two DA waves. The
amplitude, a(τ,ξ ), of two dark solitons is illustrated.
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Fig. 8. (color online) Space-time plot is presented for different values of ηl with k = 0.3, ε = 0.01, R = 0.2, and ϕa = ϕb= 0.2.
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6. Conclusion
In summary, the MI and the collision of two NDA en-

velope solitons in a SCDP system in the kinetic regime have
been investigated. Using the derivative expansion perturba-
tion technique, the NLST equation is derived. The instability
domain for the NDA wave is estimated. The EPLK method
has been employed to obtain the analytical phase shifts after
the collision of NDA envelope dark solitons. It is clear that
the wave form of the colliding NDA envelope dark solitons
remain unchanged. Analytically and numerically, the effects
of the viscosity ηl the relaxation time τm, and the dust charge
fluctuation are investigated. It is found that the phase shift
and the stable domain increase with increasing the longitudinal
viscosity. Moreover, increasing the relaxation time leads to an
increase of the phase shift and the stable domain. This means,
physically, that the increase of ηl (τm) leads to an increase (a
decrease) of the group velocity λ , which in turn leads to an
increase (a decrease) in the restoring force, which makes the
NDA envelope dark soliton taller (shorter). Accordingly, the
obtained result indicates that the stable domain and the phase
shift for NDA envelope dark solitons decrease (increase) with
the increase of ηl (τm). Finally, the dust charge fluctuation af-
fects strongly on the nature, the stability domain and the phase
shift of NDA envelope solitons. Evidently, including the dust
charge fluctuation extends the stable domain and decreases the
magnitude of phase shift. Furthermore at τm= 0 (i.e., relations
time is instantaneous), it is worth noticing that the usual hydro-
dynamic equation is considered. However, in our investigation
we have considered the dust charge fluctuation in the kinetic

regime, where the relaxation time τm is much larger than the
dust fluid dynamic time (NDA envelope solitons), which gives
rise to different physical behavior as interpreted. In addition, it
is useful to compare our results with the results of El-Labany et
al.[21] Properly, this work agrees with the results of El-Labany
et al.[21] by neglecting the viscosity, the relaxation time, and
the dust charge fluctuation. Hence our model, in the kinetic
regime, is more general and can describe the propagation and
the collision of two NDA envelope dark solitons by the deriva-
tive expansion perturbation technique and the EPLK method,
respectively.

Appendix A
The second harmonic modes (n = L = 2) arising from

nonlinear self-interactions of the carrier waves are obtained
in terms of (ϕ(1)

1 )2 as

ϕ
(2)
2 =

g2

g3
ϕ
(1)
1

2
, Z(2)

d2 = g4ϕ
(1)
1

2
,

n(2)d2 = g5ϕ
(1)
1

2
, u(2)d2 = g6ϕ

(1)
1

2
.

Proceeding to the first harmonics of order ε2, the corre-
sponding amplitudes are given by

ϕ
(2)
1 = i

g7

g8

∂ϕ
(1)
1

∂ξ
, Z(2)

d1 = ig9
∂ϕ

(1)
1

∂ξ
,

n(2)d1 = ig10
∂ϕ

(1)
1

∂ξ
, u(2)d1 = ig11

∂ϕ
(1)
1

∂ξ
,

g2 =
g1

1+σ (1−Ψ0)

−g1
(
α + k2 +g1

)
+

1
2
(
µeσ

2
i −µ i

)
+

1
ω

k
(−4ω2τm +4k2ηl)+4kωτmµd

×
{

ω

k

(
−4ω

2
τm +4k2

ηl
)(

α + k2 +g1
)2

+2kωτm

[
−
(
α + k2)−Rg1 +

R
2

]}
,

g3 = −
(
α +4k2 +g1

)
+

4kωτm (R−1)
ω

k
(−4ω2τm+4k2ηl)+4kωγτmµd

,

g4 =
g1g2

g3
+

g1

1+σ (1−Ψ0)
,

g5 =
−(α +4k2)g2

g3
−g4

+g1
(
α+k2 +g1

)
− 1

2
(
µeσ

2
i −µ i

)
,

g6 =
ω(g5−

(
α+k2 +g1

)2
)

k
,

g7 =

(
α+k2 +g1

)
ω1

{(
−ω

k2 +
λ

k

)
1

(−ω2τm + k2ηl)
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−
[(

2λτmω2

k
−ωτmµdγ−µdγkτm−2ωηl

)
− (1−R) [ωτm+kλτm]

]}
−2k,

g8 = −
(
α+k2 +g1

)
+

(1−R)kωτm

ω1 (−ω2τm + k2ηl)
,

g9 =
g1g7

g8
, g10 =−g9 +2k− (α+k2)g7

g8
,

g11 = −
(
α+k2 +g1

)(ω

k2 −
λ

k

)
+

ωg10

k
.

The nonlinear self-interaction of the carrier wave also results
in the creation of a zeroth-harmonic, in this order; its strength
is analytically determined by taking into account the L = 0

components. We can express all of these quantities in terms of
ϕ
(1)
1 ϕ

∗(1)
1 = |ϕ(1)

1 |2 as follows:

ϕ
(2)
0 =

g12

g13

∣∣∣ϕ(1)
1

∣∣∣2 + c4,

Z(2)
d0 = g14

∣∣∣ϕ(1)
1

∣∣∣2 +g1c4,

n(2)d0 = g15

∣∣∣ϕ(1)
1

∣∣∣2 + c5,

u(2)d0 = g16

∣∣∣ϕ(1)
1

∣∣∣2 + c6,

where c1, c2, and c3 are arbitrary constants and ci (i = 4,5,6)
are given by

c4 = c2 +
λc1 + c3

λ 2−µdγ
, c5 = c2− (α +g1)c4, c6 = c1+λc5,

g12 = 2g1
(
α+k2 +g1

)
+
(
−µeσ

2
i +µ i

)
− 2g1

1+σ (1−Ψ0)
+

(
α+k2 +g1

){
(1−R)+

ω

k

(
α+k2 +g1

)[ω

k
−λ +2

]
− R

2

}
µdγ−λ 2 ,

g13 = α+g1 +
1−R

λ 2−µdγ∗
, g14 = g1

[
g12

g13
+

2
1+σ (1−Ψ0)

]
,

g15 = −g14 +2g1
(
α+k2 +g1

)
−α

g12

g13
−
(
µeσ

2
i −µ i

)
, g16 = λg15−

2ω
(
α+k2 +g1

)2

k
.

From the (L = 1) component of the third-order equations
(n = 3), we obtain the following NLST equation for the NDA
wave as

i
∂Ψ

∂τ
+P

∂ 2Ψ

∂ξ 2 +Q|Ψ |2Ψ +HΨ = 0,

P =
Q1

Q0
, Q =

Q2

Q0
, H =

Q3

Q0
,

Q0 =−
(
−ω2τm + k2ηl

)(
α+k2 +g1

)
−kD4

ω (−ω2τm + k2ηl)+ k2ωτmµdγ
,

Q1= 1+
−D3 +

(
−ω2τm + k2ηl

)
(λg10−g11)

k
(−ω2τm + k2ηl)

ω

k
+kωτmµdγ

− 2kg7

g8
,

ω1 =
kωτmµdγ

(ω2τm− k2ηl)
− ω

k
,

Q2 =
−D8

1+σ (1−Ψ0)
+
−D1 +

(
−ω2τm + k2ηl

)
D7

k
(−ω2τm + k2ηl)

ω

k
+kωτmµdγ

−D5,

Q3 =−D6 +
−4g1c4

1+σ (1−Ψ0)

+
−D2+2

(
−ω2τm + k2ηl

)(
α+k2 +g1

)[
c6 + c5

ω

k

]
(−ω2τm + k2ηl)

ω

k
+kωτmµdγ

,

where

D1 = ω
2
τm(α+k2 +g1)

(
−2g16 (1−2ω)+g6

+
ω

k

(
−2g15−g5+3

(
α+k2 +g1

)2
))

+
(
α+k2 +g1

)(
−2ωkτm

g12

g13

−ωkτm
g2

g3
+2ωRkτm

g12

g13

+ωkRτm
g2

g3
−3ωkτmg1−6ωg1kRτm

)
+ωkτm

(
2g15 (1−R)+g5 (1−R)

+2
g12

g13
(R+g1+2Rg1)+R

g2

g3
−R

8
+

g1g2

g3
+2g14

+g4−6g1R+
2g1g2R

g3
+4Rg14 +2Rg4+3Rg2

1

)
,

D2 =
(
α+k2 +g1

)(
−2ω

2
τmc6−

2ω3τm

k
c5

+4ω
2
τmc6−2ωc4kτm

+2ωkRτmc4

)
+2c5ωkτm(1−R)

+2ωkτmc4[R(1+4g1)+2g1],

D3 = 2ωλτmg11 +
(
α+k2 +g1

)
×
(

λ 2τmω

k
−τmµdγ∗λ −

ηlω

k

)
+ [1−R]τm

(
ωg7

g8
+ kλ

g7

g8

)
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+Rλτm− τmµdγ∗g10(ω +λk−2kηlg11),

D4 = kτm [1−R]+
(
α+k2 +g1

)(
− ω2τm

k
+ kτmµdγ∗

)
,

D5 = −
(
α+k2 +g1

)
[2g14 +g4]+g1[2g15 +g5]

+
(
µeσ

2
i −µ i

)(2g12

g13
+

g2

g3

)
+

(
µeσ3

i +µ i
)

2
,

D6 = 2[−
(
α+k2 +g1

)
g1c4 +g1c5 + c4

(
µeσ

2
i −µ i

)
],

D7 =
(
α+k2 +g1

)
[k(2g16 +g6)+ω(2g15 +g5)],

D8 = 2g14 +g4 +
2g1g12

g13
+

g1g2

g3
.

Appendix B
The leading phase changes due to the collision can be cal-

culated

P(0) (η) =
h5

h4

(
12h3ϕL

h2

)1/2 [
tanh

((
hϕL

12h3

)1/2

η

)
+1
]
,

Q(0) (ξ ) =
h5

h4

(
12h3ϕR

h2

)1/2 [
tanh

((
h2ϕR

12h3

)1/2

ζ

)
−1
]
.

Therefore, the solution up to O(ε2) order can be obtained as
following:

a(τ,ξ ) = ε
2
[

ϕRsech2

(√
ϕRh2

12h3
ζ

)

+ϕLsech2

(√
ϕLh2

12h3
η

)]
+O(ε4),

φ (τ,ξ ) = ε

√
(2ϕ2

0−3Qϕ2
0−H)

P

×
{(

12h3ϕL

h2

)1/2
[

tanh

((
h2ϕL

12h3

)1/2

η

)
+1

]

−
(

12h3ϕR

h2

)1/2
[

tanh

((
h2ϕR

12h3

)1/2

ζ

)
−1

]}
+O(ε3).

Therefore, one can obtain the corresponding phase shifts

∆P0=−2ε
2 h5

h4

(
12h3ϕL

h2

)1/2

,

∆Q0= 2ε
2 h5

h4

(
12h3ϕR

h2

)1/2

,

which are Eqs. (40) and (41), respectively.

References
[1] Mendis D A and Rosenberg M 1994 Annu. Rev. Astron. Astrophys. 32

419
[2] Goertz C K 1989 Rev. Geophys. 27 271
[3] Shukla P K and Mamun A A 2002 Introduction to Dusty Plasma

Physics (IOP, Bristol) and references therein
[4] Nejoh Y N 1997 Phys. Plasmas 4 2813
[5] Xie B S, He K F and Huang Z Q 1998 Phys. Lett. A 247 403
[6] El-Taibany W F and Kourakis I 2006 Phys. Plasmas 13 062302
[7] Ghosh S 2006 Phys. Plasmas 13 022301
[8] Veeresha B M, Tiwari S K, Sen A, Kaw P K and Das A 2010 Phys. Rev.

E 81 036407
[9] Ikezi H 1986 Phys. Fluids 29 1764

[10] Thomas H, Morfill G E, Demmel V, Goree J, Feuerbacher B and
Mohlmann D 1994 Phys. Rev. Lett. 73 652

[11] Frenkel Y 1946 Kinetic Theory of Liquids (Oxford: Clarendon Press)
[12] Ohta H and Hamaguchi S 2000 Phys. Rev. Lett. 84 6026
[13] Shukla P K and Mamun A A 2001 IEEE Trans. Plasma Sci. 29 221
[14] Mamun A A, Eliasson B and Shukla P K 2004 Phys. Lett. A 332 412
[15] Mamun A A, Shukla P K and Farid T 2000 Phys. Plasmas 7 2329
[16] Mamun A A and Cairns R A 2009 Phys. Rev. E 79 055401
[17] Mamun A A, Ashrafi K S and Shukla P K 2010 Phys. Rev. E 82 026405
[18] Rahman M S and Mamun A A 2011 Phys. Plasmas 18 123702
[19] Ghosh S, Gupta M R, Chakrabarti N and Chaudhuri M 2011 Phys. Rev.

E 83 066406
[20] Xie B S, Yu M Y, He K F, Chen Z Y and Liu S B 2002 Phys. Rev. E 65

027401
[21] El-Labany S K, El-Taibany W F, El-Shamy E F, El-Depsy A and Zedan

N A 2012 Phys. Plasmas 19 103708
[22] Zabusky N J and Kruskal M D 1965 Phys. Rev. Lett. 15 240
[23] Su C H and Mirie R M 1980 J. Fluid Mech. 98 509
[24] Huang G X and Velarde M G 1996 Phys. Rev. E 53 2988
[25] Li S C and Duana W S 2008 Eur. Phys. J. B 62 485
[26] El-Shamy E F 2009 Phys. Plasmas 16 113704
[27] EL-Labany S K, EL-Shamy E F and El-Mahgoub M G 2012 Phys.

Plasmas 19 062105
[28] Xue J K 2004 Phys. Rev. E 69 016403
[29] Xue J K 2006 Chin. Phys. 15 562
[30] Li S C, Wu L H, Lin M M and Duan W S 2007 Chin. Phys. 24 019401
[31] El-Labany S K, El-Shamy E F and Shokry M 2010 Phys. Plasmas 17

113706
[32] Ichimaru S, Iyetomi H and Tanaka S 1987 Phys. Rep. 149 91
[33] El-Taibany W F, El-Bedwehy N A and El-Shamy E F 2011 Phys. Plas-

mas 18 033703
[34] Taniuti T and Yajima N 1969 J. Math. Phys. 10 1369
[35] Amin M R, Morfill G E and Shukla P K 1998 Phys. Rev. E 58 6517
[36] Calogero F, Degasperis A and Xiaoda J 2000 J. Math. Phys. 41 6399
[37] Gredeskul S A and Kivshar Yu S 1989 Phys. Rev. Lett. 62 977
[38] Belmonte-Beitia J and Cuevas J 2011 J. Math. Phys. 52 032702
[39] Huang G X and Velarde M G 1996 Phys. Rev. E 53 2988
[40] Gardner C S, Greener J M, Kruskal M D and Miura R M 1967 Phys.

Rev. Lett 19 1095
[41] El-Shamy E F 2010 Eur. Phys. J. D 56 73
[42] Bandyopadhyay P, Prasad G, Sen A and Kaw P K 2008 Phys. Rev. Lett.

101 065006

035201-11

http://dx.doi.org/10.1146/annurev.aa.32.090194.002223
http://dx.doi.org/10.1146/annurev.aa.32.090194.002223
http://dx.doi.org/10.1029/RG027i002p00271
http://dx.doi.org/10.1063/1.872414
http://dx.doi.org/10.1016/S0375-9601(98)00616-1
http://dx.doi.org/10.1063/1.2205197
http://dx.doi.org/10.1063/1.2167583
http://dx.doi.org/10.1103/PhysRevE.81.036407
http://dx.doi.org/10.1103/PhysRevE.81.036407
http://dx.doi.org/10.1063/1.865653
http://dx.doi.org/10.1103/PhysRevLett.73.652
http://dx.doi.org/10.1103/PhysRevLett.84.6026
http://dx.doi.org/10.1109/27.923698
http://dx.doi.org/10.1016/j.physleta.2004.10.012
http://dx.doi.org/10.1063/1.874068
http://dx.doi.org/10.1103/PhysRevE.79.055401
http://dx.doi.org/10.1103/PhysRevE.82.026405
http://dx.doi.org/10.1063/1.3671960
http://dx.doi.org/10.1103/PhysRevE.83.066406
http://dx.doi.org/10.1103/PhysRevE.83.066406
http://dx.doi.org/10.1103/PhysRevE.65.027401
http://dx.doi.org/10.1103/PhysRevE.65.027401
http://dx.doi.org/10.1063/1.4762847
http://dx.doi.org/10.1103/PhysRevLett.15.240
http://dx.doi.org/10.1017/S0022112080000262
http://dx.doi.org/10.1103/PhysRevE.53.2988
http://dx.doi.org/10.1140/epjb/e2008-00192-y
http://dx.doi.org/10.1063/1.3261842
http://dx.doi.org/10.1063/1.4729324
http://dx.doi.org/10.1063/1.4729324
http://dx.doi.org/10.1103/PhysRevE.69.016403
http://dx.doi.org/10.1088/1009-1963/15/3/020
http://www.ncbi.nlm.nih.gov/pubmed/22966490
http://dx.doi.org/10.1016/0370-1573(87)90125-6
http://dx.doi.org/10.1063/1.3570662
http://dx.doi.org/10.1063/1.3570662
http://dx.doi.org/10.1063/1.1664975
http://dx.doi.org/10.1103/PhysRevE.58.6517
http://dx.doi.org/10.1063/1.1287644
http://dx.doi.org/10.1103/PhysRevLett.62.977
http://dx.doi.org/10.1063/1.3559118
http://dx.doi.org/10.1103/PhysRevE.53.2988
http://dx.doi.org/10.1103/PhysRevLett.19.1095
http://dx.doi.org/10.1103/PhysRevLett.19.1095
http://dx.doi.org/10.1140/epjd/e2009-00279-1
http://dx.doi.org/10.1103/PhysRevLett.101.065006
http://dx.doi.org/10.1103/PhysRevLett.101.065006

	1. Introduction
	2. Govern equations
	3. Derivation of the NLST equation
	4. The collision of NDA envelope dark solitons
	5. Discussion
	6. Conclusion
	References

