DAMIETTA UNIVERSITY

CHEM-103: BASIC ORGANIC CHEMISTRY

LECTURES 1-2

Dr Ali El-Agamey

LEARNING OUTCOMES

LECTURES 1-2

> Appreciate the importance of organic chemistry.
> Draw the structures of organic compounds using Lewis, condensed and skeletal structures.
> Identify various functional groups.
$>$ Identify the hybridization of various atoms.

Reading

Wade LG, Organic Chemistry/, Prentice Hall, Upper Saddlle River, 2010.

J Clayden et al, Organic Chemistry, Oxford University Press, 2001.

Morrison \& Boyd, Organic Chemistry, Allyn and Bacon, Inc., Boston, 1987.

P Sykes, A Guidebook to Mechanism in Organic Chemistry, 1991.

Electronic Configurations of Atoms

- Valence electrons are electrons on the outermost shell of the atom.

TABLE 1-1

Electronic Configurations of the Elements of the First and Second Rows

Element	Configuration	Valence Electrons
\mathbf{H}	$1 s^{1}$	1
He	$1 s^{2}$	2
Li	$1 s^{2} 2 s^{1}$	1
Be	$1 s^{2} 2 s^{2}$	2
B	$1 s^{2} 2 s^{2} 2 p_{x}^{1}$	3
C	$1 s^{2} 2 s^{2} 2 p_{x}^{1} 2 p_{y}^{1}$	4
N	$1 s^{2} 2 s^{2} 2 p_{x}^{1} 2 p_{y}^{1} 2 p_{z}^{1}$	5
O	$1 s^{2} 2 s^{2} 2 p_{x}^{2} 2 p_{y}^{1} 2 p_{z}^{1}$	6
F	$1 s^{2} 2 s^{2} 2 p_{x}^{2} 2 p_{y}^{2} 2 p_{z}^{1}$	7
Ne	$1 s^{2} 2 s^{2} 2 p_{x}^{2} 2 p_{y}^{2} 2 p_{z}^{2}$	8

Bonding Patterns

	Valence electrons	\# Bonds	\# Lone Pair Electrons
\mathbf{C}	4	4	0
\mathbf{N}	5	3	$\mathbf{1}$
\mathbf{O}	6	2	2
Halides $(\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I})$	7	$\mathbf{1}$	$\mathbf{3}$

Chapter 1

Drawing molecules

(1) Lewis structure: a structural formula that shows all valence electrons, with the bonds symbolized by dashes $(-)$ or by pairs of dots, and nonbonding electrons symbolized by dots.
(2) Condensed structural formulas:
(3) Skeletal structure (Line-Angle Formula): (i) Draw chains of atoms as zig-zags (ii) Show functional groups (iii) Miss out H and C atoms

Lewis Structures

CH_{4}		$\mathbf{N H}_{3}$
Carbon: $4 e$ $4 \mathrm{H} @ 1 e$ ea: $\frac{4 e}{8 e}$	$\begin{array}{r} \text { Nitrogen: } 5 e \\ 3 \mathrm{H} @ 1 e \text { ea: } \frac{3 e}{8 e} \end{array}$	$\begin{gathered} \mathrm{H} \cdot \bullet \mathrm{~N} \cdot \cdot \mathrm{H} \\ \dot{\mathrm{H}} \end{gathered}$
$\mathrm{H}_{2} \mathrm{O}$		Cl_{2}

Oxygen: $6 e \mathrm{H} \cdot \bullet$ Ọ••• H
$2 \mathrm{Cl} @ 7 e$ ea: $14 e$

v

Double and Triple Bonds

(2) Condensed structural formulas

Lewis (Extended)	Condensed
	$\mathrm{CH}_{3} \mathrm{CH}_{3}$

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$

(2) Condensed structural formulas

Lewis (Extended) Condensed

Condensed structural formulas

Compound	Lewis Structure	Condensed Structural Formula
ethane		$\mathrm{CH}_{3} \mathrm{CH}_{3}$
isobutane		$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CH}$
n-hexane		$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}$

Condensed structural formulas

TABLE 1-2		
Continued		
Compound	Lewis Structure	Condensed Structural Formula
diethyl ether		$\begin{aligned} & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{3} \\ & \text { or } \mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2} \mathrm{CH}_{3} \\ & \text { or }\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{O} \end{aligned}$
ethanol		$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
isopropyl alcohol		$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}$
dimethylamine		$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$
	Copyright © 2010 Pearson Prent Chapter 1	Inc. ir

Condensed structural formulas

TABLE 1-3

Condensed Structural Formulas for Double and Triple Bonds

Compound	Lewis Structure	Condensed Structural Formula
2-butene		$\mathrm{CH}_{3} \mathrm{CHCHCH}_{3}$ or $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3}$
acetonitrile		$\mathrm{CH}_{3} \mathrm{CN}$ or $\mathrm{CH}_{3} \mathrm{C}=\mathrm{N}$
acetaldehyde		$\mathrm{CH}_{3} \mathrm{CHO}$ or
acetone		$\mathrm{CH}_{3} \mathrm{COCH}_{3}$ or
acetic acid		
Copyright © 2010 Pearson Prentice Hall, Inc.		

(3) Skeletal structure (line-angle formula)

Problem

> 1-Draw the complete Lewis structures for the following condensed structural formulas.
$>$ (i) $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$
(ii) $\mathrm{CH}_{3} \mathrm{COCOOH}$
$>$ (iii) $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{CO}$
(iv) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{Cl}$

Homework: Give Lewis structures corresponding to the following skeletal structures.

(a)

(b)

(c)

(d)

(e)

Homework

$>$ Draw the skeletal structures for the following Lewis structures.

(a)

Names of normal alkanes

> Homework: Draw the skeletal structures for the following compounds except methane.

$>\mathrm{CH}_{4}$	Methane	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{3}$	Octane
$\mathrm{CH}_{3} \mathrm{CH}_{3}$	Ethane	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CH}_{3}$	Nonane
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$	Propane	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{CH}_{3}$	Decane
$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}$	Butane	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{9} \mathrm{CH}_{3}$	Undecane
$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$	Pentane	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{10} \mathrm{CH}_{3}$	Dodecane
$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}$	Hexane	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{11} \mathrm{CH}_{3}$	Tridecane
$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}_{3}$	Heptane	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{12} \mathrm{CH}_{3}$	Tetradecane

Functional groups

$>R=$ Alkyl; Ar $=$ Aryl.

Alkanes
$\mathrm{R}-\mathrm{OH}$
Alcohols
$\mathrm{Ar}-\mathrm{OH}$
Phenols

Alkenes

Ethers

Alkynes

Amines

R——X
Alkyl halide $\quad \mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$

Functional groups

$\mathrm{R}-\mathrm{CO}_{2} \mathrm{H}$ Carboxylic acids

Amides

Acyl chlorides

Esters

Anhydrides/

Functional groups

Nitriles or cyanides

Nitro compounds

Aromatic hydrocarbons

Problem

> 1-Draw the skeletal structures for the following compounds and name the functional groups. .
> (i) $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$
(ii) $\mathrm{CH}_{3} \mathrm{COCOOH}$
$>$ (iii) $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{CO}$
(iv) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{Cl}$
$>$ Homework: Identify the functional groups in the following structures.
>

(a)

(b)

(c)

Electronic Structure of the Atom

- An atom has a dense, positively charged nucleus surrounded by a cloud of electrons.
- The electron density is highest at the nucleus and drops off exponentially with increasing distance from the nucleus in any direction.

The $2 p$ Orbitals

- There are three $2 p$ orbitals, oriented at right angles to each other.
- Each p orbital consists of two lobes.

- Each is labeled according to its orientation along the x, y, or z axis.
 (z. comes out toward us)

Electronic Configurations

- The aufbau principle states to

Relative orbital energies

Electronic configuration of carbon
fill the lowest energy orbitals first.

- Hund's rule states that when there are two or more orbitals of the same energy (degenerate), electrons will go into different orbitals rather than pairing up in the same orbital.

Hybridization

$>$ Experimental results show that the bond angles of $\mathrm{H}_{2} \mathrm{O}$ and NH_{3} are roughly tetrahedral (104 ${ }^{\circ}$ and 107° respectively) and CH_{4} is exactly tetrahedral (109.5$\left.{ }^{\circ}\right)$!!!
$>$ Problem: Orbitals available for bonding are $2 s$ () and $2 p$ (right angles to each other)
$>$ In order to account for the observed geometry, hybridization was proposed as a convenient model.
$>$ Hybridization of atomic orbitals is a mathematical mixing of two or more different orbitals on a given atom to give the same number of new hybrid atomic orbitals, each of which has some of the character of the original component orbitals.

Hybridization

$>$ Also, the resulting hybrid orbitals have directional character and when used to bond with atomic orbitals of other atoms, they help to determine the shape of the molecule formed.
$>$ Hybridization involves (i) promotion and (ii) mixing (hybridization), For example; CH_{4}

$$
>2 s^{2} 2 p_{\mathrm{x}}{ }^{1} 2 p_{\mathrm{y}}{ }^{1} \xrightarrow{\text { (i) }} 2 s^{1} 2 p_{\mathrm{x}}{ }^{1} 2 p_{\mathrm{y}}{ }^{1} 2 p_{\mathrm{z}}{ }^{1} \xrightarrow{\text { (ii) }}
$$

$4 s p^{3}$ hybrid atomic orbitals

$s p^{3}$ Hybrid Orbitals

- There are $4 s p^{3}$ hybrid atomic orbitals.
- The atoms has tetrahedral electron pair geometry.
- 109.5° bond angle

Bonding in Ethane

- Ethane is composed of two methyl groups bonded by the overlap of their $s p^{3}$ hybrid orbitals.
- There is free rotation along single bonds.

Hybridization

\Rightarrow Ethylene: $\quad \mathrm{H}_{\mathbf{2}} \mathrm{C}=\mathrm{CH}_{2}$
$>2 s^{1} 2 p_{\mathrm{x}}{ }^{1} 2 p_{\mathrm{y}}{ }^{1} 2 p_{\mathrm{z}}{ }^{1} \xrightarrow{\text { (ii) }} 3 s p^{2}$ hybrid atomic orbitals and $2 p_{\mathrm{z}}{ }^{1}$
$>$ In ethylene, the whole skeleton is in one plane and the central π-bond is above and below the plane.

$\boldsymbol{s p}^{\mathbf{2}}$ Hybrid Orbitals

- $3 s p^{2}$ hybrid atomic orbitals.
- Trigonal planar geometry
- 120° bond angle

Bonding in Ethylene

- Ethylene has three (3) sigma bonds formed by its $s p^{2}$ hybrid orbitals in a trigonal planar geometry.
- The unhybridized p orbital of one carbon is perpendicular to its $s p^{2}$ hybrid orbitals and it is parallel to the unhybridized p orbital of the second carbon.
- Overlap of these two p orbitals will produce a pi bond (double bond) which is located above and below the sigma bond.

Rotation Around Double Bonds

- Single bonds can rotate freely.
- Double bonds cannot rotate.

Hybridization

> Acetylene: $\quad \mathbf{H C} \equiv \mathbf{C H}$
$>2 s^{1} 2 p_{x}{ }^{1} 2 p_{y}{ }^{1} 2 p_{z}{ }^{1} \xrightarrow{\text { (ii) }} 2 s p$ hybrid atomic orbitals plus $2 p_{\mathrm{y}}{ }^{1}$ and $2 p_{\mathrm{z}}{ }^{1}$
$>$ In acetylene, the whole skeleton is linear.

sp Hybrid Orbitals

- Have $2 s p$ hybrid atomic orbitals.
- Linear electron pair geometry.

Valence-shell electron-pair repulsion theory (VSEPR)

$>$ Electron pairs repel each other, and the bonds and lone pairs around a central atom generally are separated by the largest possible angles.
$>$ An angle of 109.5° is the largest possible separation for four pairs of electrons; 120° is the largest separation for three pairs; and 180° is the largest separation for two pairs.

Molecular Shapes

methane, 109.5°

ethylene, close to 120° Copyright © 20^{10} Pearson Prentice Hall, Inc.

- As mentioned earlier, bond angles cannot be explained with simple s and p orbitals.
- Valence-shell electron-pair repulsion theory (VSEPR) is used to explain the molecular shape of molecules.

General rules of hybridization and geometry

Rule 1: Both sigma bonding electrons and lone pairs can occupy hybrid orbitals. Therefore,
$>$ The no. of hybrid orbitals on an atom $=$ no. of sigma bonds + no. of lone pairs of electrons
$>$ The no. of hybrid orbitals on an atom $=$ no. of atoms bonded to the central atom + no. of lone pairs of electrons
> Rule 2: Use the hybridization and geometry that give the widest possible separation of the calculated number of bonds and lone pairs.

General rules of hybridization and geometry

Rule 3: If two or three pairs of electrons form a multiple bond between two atoms, the first bond is a sigma bond formed by a hybrid orbital. The second bond is a pi bond, consisting of two lobes above and below the sigma bond, formed by unhybridized p orbitals. The third bond of a triple bond is another pi bond, perpendicular to the first pi bond.

Specify the hybridization of each atom in the following compound?

hex-1-en-4-yne
$>\mathrm{C} 1, \mathrm{C} 2$ are $s p^{2} ; \mathrm{C} 3, \mathrm{C} 6$ are $s p^{3}$ and $\mathrm{C} 4, \mathrm{C} 5$ are $s p$
> More Examples

What is the hybridization of $\mathrm{BH}_{4}^{-}, \mathrm{CH}_{4}, \mathrm{NH}_{4}{ }^{+}$

 and $\mathrm{CH}_{3}{ }^{+}$?$\mathrm{BH}_{4}^{-}, \mathrm{CH}_{4}$ and NH_{4}^{+}are $s p^{3}$-hybridized and $\mathrm{CH}_{3}{ }^{+}$is $s p^{2-}$ hybridized.

sp 2-hybridized

$$
\text { sp}^{3} \text {-hybridized }
$$

Energy of various orbitals

- The greater the s

Electronic configuration of carbon character, the lower the energy, the greater stability.

- We need to populate the lowest energy orbital.

Homework

Specify the hybridization of each atom and if the atom has lone pair, specify the type of orbitals which include them?

(a)
BeH_{2}
(b)
BH_{3}
(c)

(d)

Homework

Specify the hybridization of each atom and if the atom has lone pair, specify the type of orbitals which include them?
$\mathrm{H}_{3} \mathrm{C}-\mathrm{C} \equiv \mathrm{N}$
(a)
$\mathrm{H}_{2} \mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}$
(b)

