DAMIETTA UNIVERSITY

CHEM-103:

BASIC ORGANIC CHEMISTRY

LECTURES 1-2

Dr Ali El-Agamey

۱

۲

LEARNING OUTCOMES LECTURES 1-2

- > Appreciate the importance of organic chemistry.
- Draw the structures of organic compounds using Lewis, condensed and skeletal structures.
- > Identify various functional groups.
- > Identify the hybridization of various atoms.

		Electronic Configurations of Atoms					
• <i>Valence electrons</i> are electrons on the outermost shell of the atom.							
					TABLE 1-1	ations of the Elements of the First and	Second Rows
					Element	Configuration	Valence Electrons
Н	$1s^{1}$	1					
Не	$1s^{2}$	2					
Li	$1s^2 2s^1$	1					
Be	$1s^2 2s^2$	2					
В	$1s^22s^22p_x^1$	3					
a	$1s^22s^22p_x^12p_y^1$	4					
C	$1s^2 2s^2 2p_1^1 2p_2^1 2p_2^1$	5					
N N	$\sim -F \chi - F \chi - F \chi$	·					
C N O	$1s^22s^22p_x^22p_y^12p_z^1$	6					
N O F	$\frac{1s^2 2s^2 2p_x^2 2p_y^2 2p_z^1}{1s^2 2s^2 2p_x^2 2p_x^2 2p_y^2 2p_z^1}$	6 7					
C N O F Ne	$\frac{1s^22s^22p_x^22p_y^12p_z^1}{1s^22s^22p_x^22p_y^22p_z^1}$ $\frac{1s^22s^22p_x^22p_y^22p_z^1}{1s^22s^22p_x^22p_y^22p_z^2}$	6 7 8					
C N O F Ne	$\frac{1s^22s^22p_x^22p_y^{-1}2p_z^{-1}}{1s^22s^22p_x^22p_y^{-2}2p_z^{-1}}$ $\frac{1s^22s^22p_x^22p_y^22p_z^{-1}}{1s^22s^22p_x^22p_y^22p_z^{-2}}$ Copyright © 2010 Pearson Prentice Hall, Inc.	6 7 8					

Bonding Patterns			
Valence electrons	# Bonds	# Lone Pair Electrons	
4	4	0	
5	3	1	
6	2	2	
7	1	3	
	Bonding Valence electrons 4 5 6 7	Valence electrons# Bonds44536271	

Drawing molecules

- (1) Lewis structure: a structural formula that shows all valence electrons, with the bonds symbolized by dashes
 (-) or by pairs of dots, and nonbonding electrons symbolized by dots.
- > (2) Condensed structural formulas:
- (3) Skeletal structure (Line-Angle Formula): (i) Draw chains of atoms as zig-zags (ii) Show functional groups (iii) Miss out H and C atoms

٦

Hybridization Experimental results show that the bond angles of H₂O and NH₃ are roughly tetrahedral (104° and 107° respectively) and CH₄ is exactly tetrahedral (109.5°) !!! Problem: Orbitals available for bonding are 2s () and 2p (right angles to each other) In order to account for the observed geometry, hybridization was proposed as a convenient model. Hybridization of atomic orbitals is a mathematical mixing

Hybridization of atomic orbitals is a mathematical mixing of two or more different orbitals on a given atom to give the same number of new hybrid atomic orbitals, each of which has some of the character of the original component orbitals.

Valence-shell electron-pair repulsion theory (VSEPR)

- Electron pairs repel each other, and the bonds and lone pairs around a central atom generally are separated by the largest possible angles.
- An angle of 109.5° is the largest possible separation for four pairs of electrons; 120° is the largest separation for three pairs; and 180° is the largest separation for two pairs.

٣٧

