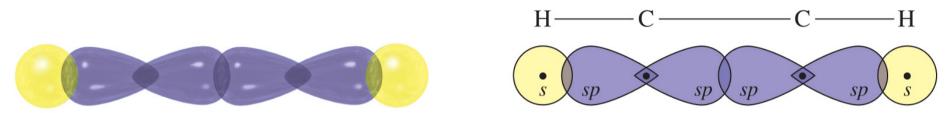

# DAMIETTA UNIVERSITY

CHEM-103:

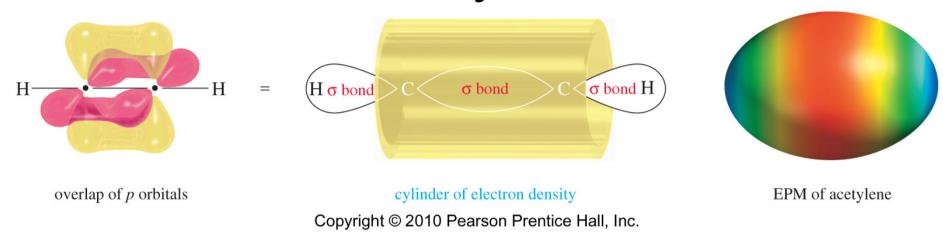
**BASIC ORGANIC CHEMISTRY** 


**LECTURE 6** 

**Dr Ali El-Agamey** 



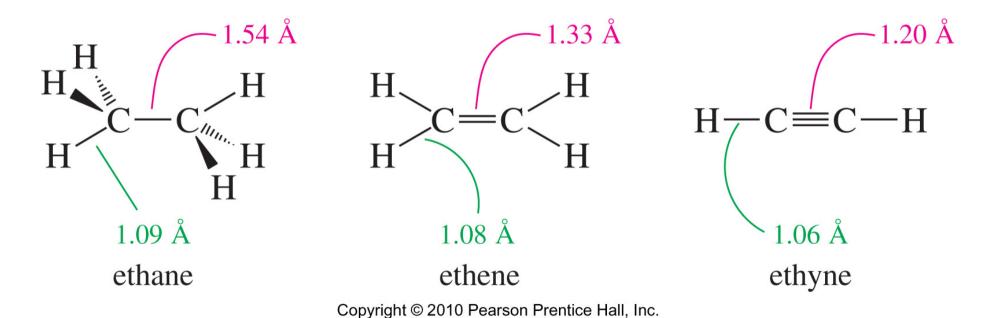
# Alkynes


# Molecular Structure of Acetylene



Copyright © 2010 Pearson Prentice Hall, Inc.

- Triple-bonded carbons have sp hybrid orbitals.
- A sigma bond is formed between the carbons by overlap of the sp orbitals.
- Sigma bonds to the hydrogens are formed by using the second sp orbital.
- Since the sp orbitals are linear, acetylene will be a linear molecule.


# Overlap of the *p* Orbitals of Acetylene



Each carbon in acetylene has two unhybridized *p* orbitals with one nonbonded electron. It is the overlap of the **parallel** *p* orbitals that form the triple bond (**2 pi orbitals**).

## **Bond Lengths**

 Triple bonds are shorter than double or single bonds because of the two pi overlapping orbitals.



Chapter 9

# **Acidity Table**

| TABLE 9-2                           |                       |               |             |              |                  |
|-------------------------------------|-----------------------|---------------|-------------|--------------|------------------|
| Compound                            | Conjugate Base        | Hybridization | s Character | р <i>К</i> а |                  |
| H H<br>   <br>H—C—C—H<br>   <br>H H | H H H H - C - C H H H | $sp^3$        | 25%         | 50           | weakest<br>acid  |
| H $C=C$ $H$                         | H $C=C$ $H$           | $sp^2$        | 33%         | 44           |                  |
| :NH <sub>3</sub>                    | $: \ddot{N}H_2^-$     | (ammonia)     |             | 35           |                  |
| Н−С≡С−Н                             | $H-C\equiv C$         | sp            | 50%         | 25           | stronger         |
| R—OH                                | R—Ö:⁻                 | (alcohols)    |             | 16–18        | stronger<br>acid |

Copyright © 2010 Pearson Prentice Hall, Inc.

## **Preparation of Alkynes**

$$CH_{3}-CH=CH_{2} \xrightarrow{X_{2}} CH_{3}-CH-CH_{2} \xrightarrow{KOH (alc)} CH_{3}-CH=CH_{2} \xrightarrow{X} X$$

$$X \times X$$

$$NaX + CH_{3}-C\equiv CR \xrightarrow{RX} CH_{3}-C\equiv C^{\bigcirc} Na^{\oplus} \xrightarrow{NaNH_{2}} CH_{3}-C\equiv CH$$

$$Sodium methylacetylide$$

$$RX must be 1^{\circ}$$

NaX + 
$$CH_3$$
- $C \equiv C - CH_2CH_3 \leftarrow CH_3CH_2X$   $CH_3$ - $C \equiv C^{\bigcirc}$  Na $^{\oplus}$   $\leftarrow$  NaNH<sub>2</sub>  $CH_3$ - $C \equiv CH$  Pent-2-yne Propyne

NaNH<sub>2</sub>: Sodium amide

## Reactions of Alkynes

Keto
$$CH_{3} - C - CH_{3}$$

$$CH_{3} - C - CH_{2}$$

$$X$$

$$X = CI, Br, I$$

$$X_{2}$$

$$X = CI, Br, I$$

$$X_{2}$$

$$X = CI, Br, I$$

$$X_{3} - C - CH_{3}$$

$$X = CI, Br, I$$

$$X = CI, Br, I$$

$$X_{4} - C - CH_{2}$$

$$X = CI, Br$$

$$X = CI, Br, I$$

$$X_{5} - C - CH_{5}$$

$$X = CI, Br, I$$

$$X = C$$

## **Keto-Enol Tautomerism**

$$\begin{bmatrix} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

keto-enol tautomerism
Copyright © 2010 Pearson Prentice Hall, Inc.

- Tautomers: are compounds whose structures differ markedly in arrangement of atoms, but which exist in easy and rapid equilibrium.<sup>1</sup>
- Enols are not stable and they isomerize to the corresponding aldehyde or ketone in a process known as keto-enol tautomerism.

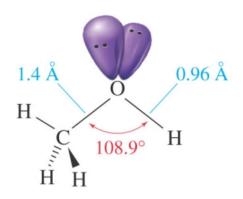
## Reactions of Alkynes

#### **Reactions as acids**

### Reduction to Alkenes

$$H_3C$$
  $CH_3$   $H_2$  Lindler Catalyst  $CH_3-C\equiv C-CH_3$   $H_3C$   $H_$ 

### Homework


- 9.26 Write the structure of the major organic product isolated from the reaction of 1-hexyne with
  - (a) Hydrogen (2 mol), platinum
  - (b) Hydrogen (1 mol), Lindlar palladium
  - (c) Lithium in liquid ammonia
  - (d) Sodium amide in liquid ammonia
  - (e) Product in part (d) treated with 1-bromobutane

### Homework

- 9.33 Show by writing a suitable series of equations how you could prepare each of the following compounds from the designated starting materials and any necessary organic or inorganic reagents:
  - (a) 2,2-Dibromopropane from 1,1-dibromopropane

(f) Decane from 1-butene and acetylene

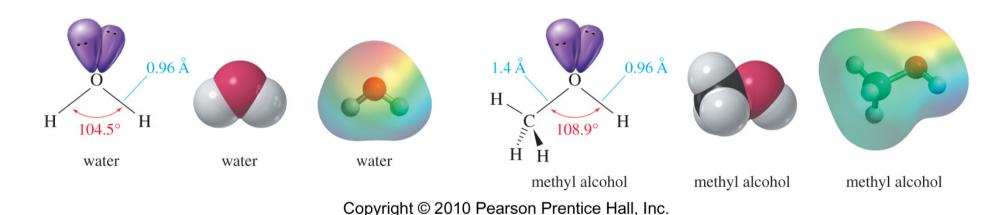
(h) 
$$C = CH$$
 and methyl bromide  $H_3C$ 



## **Alcohols**

### Classification of Alcohols

- Primary: carbon with —OH is bonded to one other carbon.
- Secondary: carbon with —OH is bonded to two other carbons.
- Tertiary: carbon with —OH is bonded to three other carbons.
- Aromatic (phenol): —OH is bonded to a benzene ring.


## **Examples of Classifications**

Primary alcohol

Secondary alcohol

#### Homework: Write the IUPAC name of the following compounds

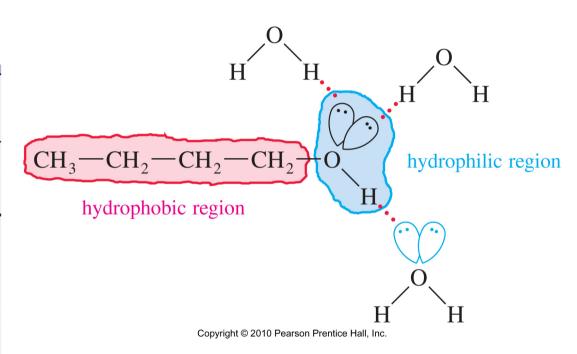
# Structure of Water and Methanol



- Oxygen is sp<sup>3</sup> hybridized and tetrahedral.
- The H—O—H angle in water is 104.5°.
- The C—O—H angle in methyl alcohol is 108.9°.

# **Physical Properties**

- Alcohols have high boiling points due to hydrogen bonding between molecules.
- Small alcohols are miscible in water, but solubility decreases as the size of the alkyl group increases.


# Solubility in Water

#### **TABLE 10-3**

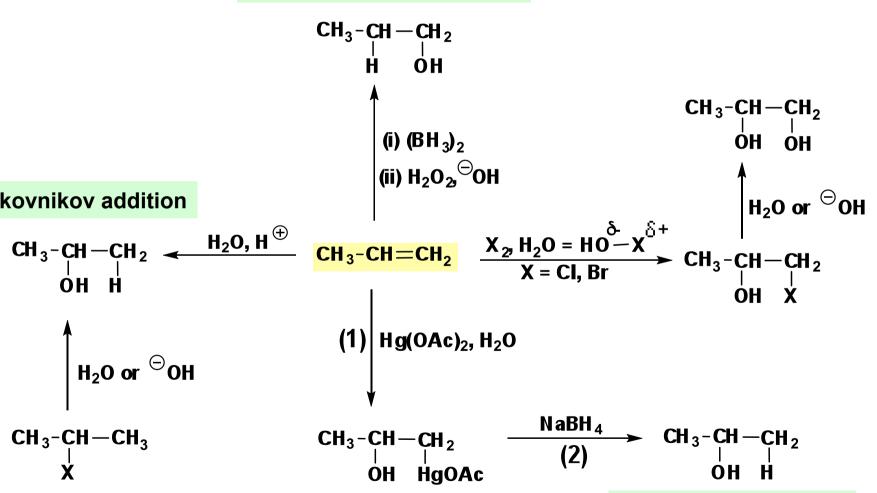
Solubility of Alcohols in Water (at 25 °C)

| Alcohol                  | Solubility<br>in Water |
|--------------------------|------------------------|
| methyl                   | miscible               |
| ethyl                    | miscible               |
| <i>n</i> -propyl         | miscible               |
| <i>t</i> -butyl isobutyl | miscible<br>10.0%      |
| <i>n</i> -butyl          | 9.1%                   |
| <i>n</i> -pentyl         | 2.7%                   |
| cyclohexyl               | 3.6%                   |
| <i>n</i> -hexyl          | 0.6%                   |
| phenol                   | 9.3%                   |
| hexane-1,6-diol          | miscible               |

Copyright © 2010 Pearson Prentice Hall, Inc.



Small alcohols are miscible in water, but as the size of the alkyl group (hydrophobic) increases, solubility with water (polar solvent) decreases.


Chapter 10

## Solubility in Water

• If a molecule is big enough (e.g. chain of 16 to 20 carbons), the hydrophilic parts dissolve in water and the **hydrophobic parts cluster together**. Such dual solubility behavior gives soaps and detergents their cleaning power.<sup>1</sup>

## **Preparation of Alcohols**

#### anti-Markovnikov addition



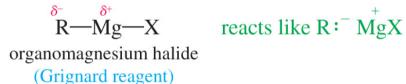
#### Markovnikov addition

CH<sub>3</sub>-CH-CH<sub>2</sub> 
$$\leftarrow$$
 H<sub>2</sub>O, H $\stackrel{\leftarrow}{}$ 
OH H
$$\downarrow H_2O \text{ or } \stackrel{\frown}{}$$
CH<sub>3</sub>-CH-CH<sub>3</sub>

 $Ac = CH_3CO$ 

**Markovnikov addition** 

## **Preparation of Alcohols**


$$\begin{array}{c|c} \textbf{CH}_3\textbf{-CH}=\textbf{CH}_2 & \textbf{HCO}_2\textbf{OH} \\ \hline \\ \textbf{OsO}_4 & \textbf{H}_2\textbf{O}_2 \\ \textbf{or KMnO}_4 & \textbf{OH} \\ \hline \\ \textbf{CH}_3\textbf{-CH}-\textbf{CH}_2 \\ \textbf{OH} & \textbf{OH} \\ \end{array}$$

$$\begin{array}{c|c} \textbf{CH}_3\textbf{-CH}-\textbf{CH}_2 \\ \textbf{OH} & \textbf{OH} \\ \hline \end{array}$$

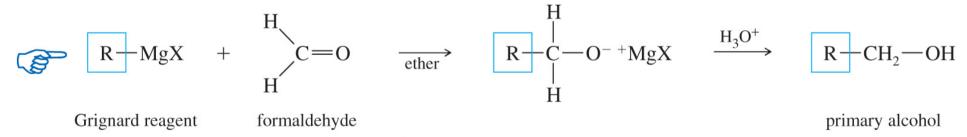
# **Grignard Reagents**

$$R$$
— $X$  +  $Mg$  ( $X$  =  $Cl$ ,  $Br$ , or  $I$ )

$$\xrightarrow{\text{CH}_3\text{CH}_2\text{OCH}_2\text{CH}_3}$$

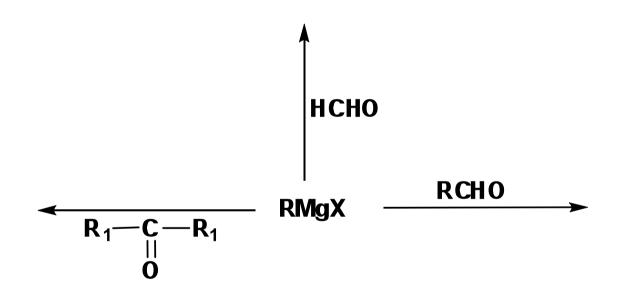


Copyright © 2010 Pearson Prentice Hall, Inc.


- Formula R—Mg—X (reacts like R: +MgX).
- Ethers are used as solvents to stabilize the complex.
- May be formed from any halide.

#### **Examples**

CI MgCl 
$$CH_3CHCH_2CH_3 + Mg$$
  $\xrightarrow{ether}$   $CH_3CHCH_2CH_3$ 


## Reaction with Carbonyl





Copyright © 2010 Pearson Prentice Hall, Inc.

## **Preparation of Alcohols**



# How could you prepare the following compound by three different methods?