DAMIETTA UNIVERSITY

CHEM-103:

BASIC ORGANIC CHEMISTRY

LECTURE 7

Dr Ali El-Agamey

Alcohols

©2010, Prentice Hall

Preparation of Alcohols

Copyright © 2010 Pearson Prentice Hall, Inc.

Reactions of Alcohols

SOCI₂: Thionyl chloride

Reactions of Alcohols (as acids)

Alkoxide lons: Williamson Ether Synthesis $o^{\bigcirc} Na^{\oplus} \xrightarrow{R_1} CH_2 \xrightarrow{R_1} RO \xrightarrow{R_1} RO \xrightarrow{L}CH_2 + NaX$

1° alkyl halide

Sodium alkoxide

 Ethers can be synthesized by the reaction of alkoxide ions with primary alkyl halides in what is known as the Williamson ether synthesis.

ether

Reactions of Alcohols

Esterification

- Reaction of an alcohol and a carboxylic acid produces an ester.
- Sulfuric acid is a catalyst.

Homework: Complete the following equations

Alcohols

©2010, Prentice Hall

Oxidation States

- **Easy** for inorganic salts:
 - CrO₄²⁻ reduced to Cr₂O₃.
 - KMnO₄ reduced to MnO₂.
- **Oxidation**: Gain of O, O_2 , or X_2 ; loss of H_2 .
- Reduction: Gain of H₂ (or H⁻); loss of O or O₂; and loss of X₂.
- The gain or loss of H⁺, ⁻OH, H₂O, HX, etc. is neither an oxidation nor a reduction.

Oxidation States of Carbons

Copyright © 2010 Pearson Prentice Hall, Inc.

Chapter 11

Oxidation of 2° Alcohols

- Oxidation of 2° alcohol gives a ketone.
- Oxidizing agent is Na₂Cr₂O₇/H₂SO₄ (orange color).
- Active reagent probably is H₂CrO₄ (chromic acid).
- Color is changed from orange to greenish-blue chromium (III).

- Chromic acid reagent (or KMnO₄) oxidizes primary alcohols to carboxylic acids.
- The oxidizing agent is **too strong** to stop at the aldehyde.

Pyridinium Chlorochromate (PCC)

Pyridinium chlorochromate (PCC):

Copyright © 2010 Pearson Prentice Hall, Inc

 $CrO_3 \cdot pyridine \cdot HCI$ $or pyH^+ CrO_3Cl^-$

- PCC is a complex of chromium trioxide, pyridine, and HCI.
- Oxidizes primary alcohols to aldehydes.
- Oxidizes secondary alcohols to ketones.

Copyright © 2010 Pearson Prentice Hall, Inc.

3° Alcohols Cannot Be Oxidized

- Carbon does not have hydrogen, so oxidation is difficult and involves the breakage of a C—C bond.
- Chromic acid test is for primary and secondary alcohols because tertiary alcohols do not react.

Summary of Alcohol Oxidations		
To Oxidize	Product	Reagent
2° alcohol 1° alcohol 1° alcohol	ketone aldehyde carboxylic acid	chromic acid (or PCC) PCC chromic acid

Copyright © 2010 Pearson Prentice Hall, Inc.

Examples

Reduction of Carbonyl

- Reduction of aldehyde yields 1° alcohol.
- Reduction of ketone yields 2° alcohol.
- Reagents:
 - Sodium borohydride, NaBH₄
 - Lithium aluminum hydride, LiAIH₄
 - Raney nickel

Sodium Borohydride

- NaBH₄ is a source of hydrides (H⁻)
- Only reacts with carbonyl of aldehyde or ketone, <u>not</u> with carbonyls of esters or carboxylic acids.

Lithium Aluminum Hydride

- LiAlH₄ is source of hydrides (H⁻)
- **Stronger** reducing agent than sodium borohydride, but dangerous to work with.
- Reduces ketones and aldehydes into the corresponding alcohol.
- Converts esters and carboxylic acids to 1° alcohols.

Reducing Agents

- NaBH₄ can reduce aldehydes and ketones but not esters and carboxylic acids.
- LiAlH₄ is a stronger reducing agent and will reduce all carbonyls.

Chapter 10

Copyright © 2010 Pearson Prentice Hall, Inc.

- Raney nickel is a hydrogen rich nickel powder that is more reactive than Pd or Pt catalysts.
- This reaction is not commonly used because it will also reduce double and triple bonds that may be present in the molecule.
- Hydride reagents (NaBH₄ and LiAlH₄) are more selective so they are used more frequently for carbonyl reductions.

Catalytic Hydrogenation

Haloform reaction

Reagent used:

Haloform reaction

> Mechanism:

Haloform reaction can convert an alcohol to a carboxylic acid with one less carbon atom.

Homework: Which of the following compounds will give a **positive iodoform test**?

Homework

15.28 Write the structure of the principal organic product formed in the reaction of 1-propanol with each of the following reagents:

- (b) Sulfuric acid (catalytic amount), heat at 200°C
- (d) Pyridinium chlorochromate (PCC) in dichloromethane
- (e) Potassium dichromate (K2Cr2O7) in aqueous sulfuric acid, heat
- (f) Sodium amide (NaNH2)

```
(g) Acetic acid (CH<sub>3</sub>COH) in the presence of dissolved hydrogen chloride
```

Homework

15.27 Show how each of the following compounds can be synthesized from cyclopentanol and any necessary organic or inorganic reagents. In many cases the desired compound can be made from one prepared in an earlier part of the problem.

(c) 2-Phenylcyclopentanol

