Energy Profile Diagrams

Energy Diagram of One-Step Exothermic Reaction

- The vertical axis in this graph represents the potential energy.
- The transition state is the highest point on the graph, and the activation energy is the energy difference between the reactants and the transition state.

Energy Diagram of Endothermic Reaction

Energy Diagram for the Chlorination of Methane

Rate-Limiting Step

- Reaction intermediates (e.g. CH₃) are reactive species however, they can be stable (i.e. less reactive) as long as they don't collide with another molecule or atom.
- Transition states are at energy maximums.
- Intermediates are at energy minimums.
- The reaction step with **highest** *E*_a will be the **slowest**, therefore **rate-determining** for the entire reaction.

Hammond Postulate

- Related species that are similar in energy are also similar in structure.
- The structure of the **transition state** resembles the structure of the closest stable species.
- *Endothermic reaction*: Transition state is product-like.
- *Exothermic reaction*: Transition state is reactant-like.

Endothermic and Exothermic Diagrams

Copyright © 2010 Pearson Prentice Hall, Inc.

Chapter 4 © Oxford University Press, 2007. All rights reserved. OXFORD Higher Educatio⁷n