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1 Introduction
This paper is devoted to studying the oscillation of the first-order delay differential equa-

tion of the form
&)+ p(Ox(t - () =0, =T, (1)

where Ty € R,,p,r € C([Ty, 00),(0,00)), and 0 < r(t) < £, and lim,_, o (¢ — r(¢)) = co.

The problem of the oscillatory properties of the solutions of delay differential equations
has been recently investigated by many authors. See, for example [1-11] and the references
therein. We mention some results for the purpose of this paper.

Chatzarakis and Li [5] studied the oscillation of delay differential equations with non-
monotone arguments. The results reported in this paper (regarding the oscillation of first-
order delay differential equations) have numerous applications (e.g., comparison princi-
ples) in the study of oscillation and asymptotic behavior of higher-order differential equa-
tions; see, for instance, [1, 6, 10, 11] for more detail.

In 1972, Ladas, Lakshmikantham, and Papadakis [9] proved that if

t
lim sup/ ps)ds>1, 2)
t—r(t)

t—00

then all solutions of (1) are oscillatory.
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Ladas [8] in 1979, and Koplatadze and Chanturiya [7] in 1982 improved (2) to

t
liminf/ p(s)ds > l (3)
. e

t—00 —r)

Concerning the constant % in (3), it is to be pointed out that if the inequality

¢ 1
/ pls)ds < -
t-r(t) €

eventually holds, then, according to a result in [4], (1) has a nonoscillatory solution.
In the recent paper [3] the authors established the following oscillation criterion for (1)
when r(¢) = 17,7 > 0.

Theorem 1.1 ([3]) Let p: [Ty, 00) — R, be a nonnegative, bounded, and uniformly con-
tinuous function such that

t
liminf / pls)ds > 0.
t—oo J, o

Moreover, suppose that the function

t
A(t) = / pls)ds, t>=Ty+r,
t-7

is slowly varying at infinity. Then

t
1
limsup/ p(s)ds> —
t-1 e

t—00

implies that all solutions of (1) are oscillatory.

Our aim is establishing a new condition for the oscillation of all solutions of (1), includ-
ing the cases where conditions (2)—(3) and Theorem 1.1 cannot be applied. We also give
an example illustrating the applicability and strength of the obtained condition over the

known ones.

2 Main result
The proof of our main result is essentially based on the following lemmas.

Lemma 2.1 Let x be an eventually positive solution of (1). Then for sufficiently large t, >
To,

n x(t—1) :/t o )x(s—r(s))

S)————ds, t>ty+T.
x(t) x(s) -
Proof Let x be an eventually positive solution of (1). Then x(¢ — r(¢)) > 0 for t >ty + 7,
where ty > T is sufficiently large. From (1), for ¢ > ¢y + T, we obtain

KO alt-r(e)
W PO 0
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or
/ d / il r(s B ds=o,
that is,
t— ¢ -
lnx( i2 :/ p(s)wds, t>t+.
x(t) t-t x(s)
The proof of the lemma is complete. O

Lemma 2.2 Let x be an eventually positive solution of (1). Then

x(t-1) L x(s—r(s))
" Y / O

+p0-pe-0] [ x5 = 1()

Lo x(s )

—/trp/(s)/;o JWduds, E>to+T. (@)

Proof It is obvious that

/ AiCati Q)

x(s)
oo [ O
77 x(s - r(s)) b P xu—r(u)
+ [p(t) -p(t- t)]/to 4x(s) ds — ftitp (s) /;0 —x(u) duds,
or
x(t ‘L') (0) / x(s —r(s) T(S))
ot -pe-o] [ I
—/tlp’(s)/t;sa%duds, t>to+T.
The proof of the lemma is complete. d

Now we focus on the function

R(t)=—/trp/(s)/t0 %dud& t>ty+T.

Lemma 2.3 Let x be an eventually positive solution of (1). Assume that:
(Hy) the function p € C([Ty, 00),(0,00));
(Hy) p(2n+1)1)-p(2nt)=0,neN;
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(H3) thereexists T, € (2nt,(2n + 1)7) such that p'(t) > 0 fort € (T, — t, T,,) and p'(t) <0
forte(T,,2n+1)tl,neN;
(Ha) inf{~ (2"~ T,)p'(t) dt,n € N} > 0
Then

inf{R((Zn + l)r), ne N} >0
Proof We easily see that

R((2n+1)7)

:_/w (t)/o M=) o /(M p(t)/o 5= 1) 4o a

x(s = r(s)) @nel)r T x(s - r(s))
2_/2;” ()dt/to x(s) ds—/Tn p(t)dt./:o —x(s) ds

2n+1)t t _
_ / 2o [ ) e
a r, *x(s)

B Ty ) 2n+1)T ) Ty x(s—r(s))
(Lo [ pom) [T

2n+1)t
) / oo [ (r)(s)) -
Tn Ty

Ty _ 2n+1)t t _
x(s —r(s)) ds—/ %) x(s — r(s)) dsdt

= [p(2n7) - p((2n + 1)7)]/ x(s)

to x(s)

B 2n+1)t , x(s F(S))
__/T” p(t)ﬁn L dsdr.

Since x(¢) is decreasing, x(t — r(£)) > x(¢),t > tp + 7. Thus

2n+1)t
R((2n+1)7) > - /T P20 (x(sr)(s)) dsdt

2n+1)t
> —f t-T)p @)dt, neNlN.
Ty

In view of (H,), we get inf{R((2n + 1)t),n € N} > 0.
The proof of the lemma is complete. O

Theorem 2.1 Suppose that (Hy)—(Hy) hold, r(t) > t, p(t) is periodic with period 27, and
pit-1)-p)>0, te (T,,,(2n+1)r),neN, (5)

t
liminf / pls)ds > 0. (6)
t—00 t—r(t)

Then all solutions of (1) are oscillatory.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Chatzarakis et al. Advances in Difference Equations (2021) 2021:85

Proof Assume that (1) has a positive solution x. The derivative of the function R(¢) is

R(t) = —p (t)/ x(s (S) ds +p/(t - f)/ x(s)S)) ds
- p(t)/_ () =16 g p(n/ S))ds

, x(s—r(S))
=70 / PR

Fpe-n-po] [

ds, t>ty+T.
to x(S)

Condition (5) implies that R'(¢) > 0 for ¢ € (T}, (2n+ 1)7). Thus the function R(¢) is increas-
ingon (T, (2n+1)t),n € N. Since R(T,) < 0,n € N, by Lemma 2.3 there exist ¢, € (T},, 2n+
1)7) such that R(¢,) = 0,n € N. Condition (H,) implies that inf{(2n + 1)t — T,;,n € N} > 0.
Put

H(@)=p(t)-pt-1), te (T,,, 2n + l)t],n eN.
According to (5) and (H;), we have

H@®)=p')-p(t-1)<0, te(Tn@2n+1r),
and H((2n + 1)t) =0,n € N. Then

H(@)=p(t)-pt-1)>0 forte (Tn,(2n + l)r),n eN. (7)
Now assume that

t,<b,=Q2n+1)t—¢, neN,

where 0 < ¢ <inf{(2n + 1)t — T);,n € N}. In view of (4), we get

1 x(b, — 1)

kb
= (b, b x(s—17)
SR A

by-1 _
+[p(by) - p(b, —‘L')]/ =0 b5 Rby), by > to+T,me N,

to x(S)
Condition (6) implies that x(z — r(¢))/x(¢) is bounded [7]. Since x(¢ —r(¢))/x(t) > x(¢ —1)/x(t),
it is obvious that there exists a constant K > 0 such that (¢ — 7)/x(t) < K,t > T >ty + T,

where T is sufficiently large. Thus

bu x(s = r(s))

ds
byt x(s)

InK > p(b,)

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Page 5 of 10



Chatzarakis et al. Advances in Difference Equations (2021) 2021:85

by—t _
+ [plb) — plby - )] / ’%dﬂz«bﬁ, busT.

Otherwise, for sufficiently large b, > T, by (7) and the periodicity of p(t), we get

bt (o
[p(b) - p(bs — 7)] /t x(sx(:)( D gs > K,

which contradicts (8).

Now assume that there exists a sequence {t,} such that
t,— 2n+1)T asn— oo, R(t,) =0, t,€ (Tn,(2n + 1)1),11 eN.
Then

R((2n + l)t)

- /2(2n+l)rp/(t) /fx(sx—(sr)(s)) dsdt
:_/m (t)/o =1 oy /(W p(t)/o =16 g g
2_[ p/(t)/ (x(r)(s))d dt+f2m t)/o x(s—r(s)) dsdt
/T,, (t)/‘0 d dt - /t:ZMI p(t)/0 6 )dsdt
=_/ p(t)/ (sx_(;(s))d dt+/:n:p/(t)/to stdt
_/2n+1 p(t)/o dsdt
2ne x(s —1(s)) @n+l)z " x(s - r(s))
= P sdt — P ——ds
=R(t,) + / (t)/ e — " dsdt /tn /(t)/to e dsdt
:/2’" (t)/ x(s —r(s)) V(S))
_/2n+1 (;:)‘/O S)) dsdt, neN.

Since t, - (2n+ 1)t asn — oo, clearly,

‘/2mp(t)/ dsdt—>0

and

2n+1)t ) t x(s _ V(S))
_/tn p(t)/to —x(s) dsdt — 0.

8)
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Thus

R((2n+1)t) > 0 ast, — (2n+1)T and n — oo.

This contradicts inf{R((2# + 1)t),n € N} > 0.
The proof of the theorem is complete.

Example Consider the delay differential equation

, a . big
x(#t)+ | — +ésinat |Jx(t-—)=0, t>0,
e a

where a >0, € (0, 7).

)

Equation (9) is a particular case of (1) when r(¢) = 7 = 7, Ty = 0, and

p(t) = 4 + 8 sinat.
Te

It is easy to see that (H) is satisfied. For condition (H>), we have

p((2n +1)1) - p(2n7)

a . T a ) T
= — +8sina(2n+1)— — — —§sina2n—
e a Tmwe a

= 8[5in(2n + 1) —sin 27171] =0, neN.

In condition (H3), T, = (21 + 0.5) 7, and

p{t)=adcosat>0 forte ((21’1 - 0.5)1, 2n + O.S)Z),
a a

p(t)<0 forte ((2n +0.5)z,(2n+ l)z],n eN.
a a

For condition (H,), we get

@n+) % T
—aé / <t - (2n+ 0.5)—) cosat dt
(2n+0.5)% a

T @n+)Z @n+)Z
=aé(2n +0.5)— / cosatdt —aé /
(

tcosatdt
a J(@n+0.5% (2n+0.5)%

1
=86(2n + 0.5)z [sin(2n + 1) — sin(2n + 0.5)71] —as [—2 cos(2n + 1)1
a a

1 T, 1 1 T
+—(2n+1)—sin(2n + 1)z — — cos(2n + 0.5)m — —(2n +0.5)— sin(2n + 0.5)7
a a a a a
b4 1 1 b4
=-8(2n+0.5)— —as - - —(2n+0.5)—
a a’> a a

T 1 T 1)
=-8(2n+0.5)— =8| -— - (2n+0.5)— | = —.
a a a a
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Thus
2n+1)t
inf{—/ t-T)p (t)dt,ne N}
Ty

@n+1)Z T )
=inf{—a5/ <t—(2n+0.5)—> cosatdt,neN} =—>0.
( a

2n+0.5)Z a

In addition, we have

pPiE-t)-pt)y=p <t - %) -pt)=ad cosa(t— %) —abcosat

= ad[cos(at — ) — cos at] = ad(—cos at — cos at)

=—-2a8cosat >0 forte((2n+0.5)z,(2n+1)£>, neN,
a a

that is, condition (5) is satisfied. Also,

t (a
/ <— + (Ssinas) ds
-z e

a é a T 1) T
=—t—-——-cosat— —\|t—— )+ —cosalt— —
e a e a a a

) 1 3 1 3 8
=——cosat+ — + —cos(at —m) = — — —cosat — — cosat
a e a e a a

1 25
= — — —cosat.
e a

Therefore

L t
lim inf/ p(s)ds =1lim inf/ <i + & sin as) ds
t—00 P t—00 P Te

1 28 a
=———>0, sel0,— |,
e a e

so that all conditions of Theorem 2.1 are satisfied, which means that all solutions of (9)
are oscillatory.
Observe, however, that

¢ 1 26 2
limsup/ p(s)ds=—+—<n+ <1, SE(O,i)
t—% e a

t—00 e e

and
t 1 25 1 a
liminf/ ps)ds=—-—<—, §¢€ (0, —),
t—00 t—% e a e e

which means that conditions (2) and (3) are not satisfied.
Moreover, the function f(¢) is not slowly varying at infinity. Indeed,

e

t 1 26
f(t):/ p(s)ds = — — — cosat, 56(0,i),
t—% e a
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and
268 268
f(t+s)—f(t)=——-cosa(t+s) + — cosat
a a
28
= —[cosat—cosa(t + s)], seR.
a

For s =m/a, we get

f<t+ %) —f(t) = 2;(S[cosat—cosoz<t+ %)]

26 46 a
= —|[cosat + cosat] = —cosat » 0 ast— 00,8 (0, — |.
a a e

Thus Theorem 1.1 cannot be applied. Recall (see, e.g., [3, 12]) that a function f : [£y, 00) —
R is slowly varying at infinity if for every s € R,

flt+s)—f() >0 ast— oo.
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