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ABSTRACT
Investigations of the nonlinear excitation and collisions of elec-
trostatic solitons in a dense semiconductor plasma composed of
electrons and holes are improved by using the higher-order correc-
tions. Applying the extended Poincaré-Lighthill-Kuo (EPLK) method
to obtain the Korteweg–de Vries (KdV) equations, which govern the
nonlinear excitation of electrostatic solitons. Furthermore, the phase
shift equations due to the collisions between electrostatic solitons
are obtained. A theoretical analysis is improved by employing the
KdV equations with the effects of the fifth – order dispersion terms.
Thenumerical illustrationsdemonstrate that thehigher-order soliton
energydepends significantly on thequantumsemiconductorplasma
numberdensity.On theotherhand, thedensityof the semiconductor
plasma has a weak effect on the lowest-order soliton energy. There-
fore, onehas tobe careful about the choosing semiconductor plasma
parameters to avoid any deficiency of the modern semiconductor
devices.
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1. Introduction

The study of quantum plasmas plays advanced roles in understanding the dynamics of
charged carriers in semiconductor quantumdevices. In particular, it is extremely interesting
in nanoscale sizes of modern semiconductor electronic devices [1–4]. In general; quan-
tum plasmas are associated with low temperatures and high densities of plasma particles
unlike the classical plasmas. Over the last 20 years, scientists have made the tremendous
progress in laser technologies, which give amazing opportunities to establish coherent
laser sources for femtosecond pulses [5,6]. In this direction, various areas of worthy sci-
entific research have been explored due to the interaction between powerful laser beams
and quantum plasmas. Of course, in the future, new research may provide semiconductor
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electronic deviceswith different newprocesses andhighperformance. Actually, the nonlin-
ear propagation and interactions of electrostatic localized coherent waves (e.g. solitons) in
semiconductor quantum plasmas play a critical role for a strong understanding of physical
situations associated with semiconductor quantum devices [7–11].

It is well known that, for a semiconductor quantum plasma system, the de Broglie
thermal wavelengths of the charged carriers (electrons and holes) are compared to the
characteristic spatial scales of the system. Thus, a semiconductor quantum plasma model
contains degenerate pressures of electrons and holes, exchange correlation potentials and
the quantum recoil effects. Recently, several researchers have investigated the effects of
thementioned physical parameters on the nonlinear propagation, stabilities and collisions
of solitons in quantum semiconductor plasmas [12–17]. For example, Moslem et al. [13]
discussed the basic characteristics of solitons in various quantum semiconductor plasmas.
They showed that the degenerate pressure has a strong effect on the reduction of the
amplitude soliton. Wang et al. [14] derived the modified Schrödinger equation to exam-
ine themodulational instability of envelope solitary waves in semiconductor plasmas. They
stated that the damping rate is directly proportional to the collision frequency of the
electron–phonon/hole-phonon. El-Bedwehy [15] investigated the nonlinear freak wave in
electron–hole quantum GaAs semiconductor plasmas. El-Bedwehy15 demonstrated that
the exchange- correlation effect has no important impact on the freak wave profile. Tolba
et al. [16] used the typical values of the GaN semiconductor plasma to point out that
both solitons and periodic travelling waves have negative potentials in the quantum
semiconductor plasmas. Very recently, El-Shamy et al. [17] illustrated that the variation
in the studied system’s geometry plays a vital role in the properties of the dark solitary
pulses. However, most of the previous work was limited to the study of the nonlinear
excitation and collisions, by obtaining the Korteweg–de Vries (KdV) equations and their
phase shift equations, for small amplitudes of electrostatic solitons in an electron–hole
semiconductor plasma regime. In effect, by increasing the amplitude soliton, both the
velocity and width of a solitary wave deviate from the prediction of the well-known KdV
equation (i.e. the KdV equation breaks down) [18]. Therefore, to overcome this weakness,
the fifth-order dispersion terms are added to the evolution equations, which govern the
nonlinear propagation of solitons. In otherwords, to obtain better predictions of the reduc-
tive perturbation method, an adopted technique is used to get the higher-order soliton
solutions, and hence the higher-order phase shifts are deduced [18–25]. Thus, the KdV
equations with fifth-order dispersion terms are used and higher-order electrostatic soli-
ton solutions and then the higher-order phase shifts are obtained. Very recently, by using
the extended Poincaré-Lighthill-Kuo (EPLK) method [26–28] and the higher-order correc-
tions [24,29], EL-Shamy et al. [30] examined the face-to-face collision of dust ion acoustic
solitons in weakly relativistic dusty plasmas with superthermality. They illustrated that the
higher-order phase shift is highly sensitive in comparison to the lowest-order phase shift.
Consequently, our objective is to discuss the effects of the higher-order corrections on
the excitation and face-to-face collisions of electrostatic solitons in dens semiconductor
plasmas.

The paper is organized as follows: In Section 2, the basicmodel is given. Furthermore, by
using the EPLK perturbationmethod, the KdV equations and the phase shifts are obtained.
In Section 3, the higher-order corrections of the nonlinear excitation and collisions of
electrostatic solitons are discussed. The lowest-order and the higher-order correction of
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the electrostatic soliton energies are determined in Section 4. Section 5 is dedicated to
numerical investigations, the general discussion and conclusion.

2. Governing equations

Using the quantum hydrodynamic (QHD) model, the governing equations for an electron-
hole semiconductor quantum plasma are written as [15–17].

∂ne,h
∂t

+ ∂(ne,hue,h)
∂x

= 0, (1)

∂ue,h
∂t

+ ue,h
∂ue,h
∂x

± µe,h
∂φ

∂x
+ γe,h

∂Vxce,h
∂x

+ σe,hn
−1/3
e,h

∂ne,h
∂x

− 2H2
e,h
∂

∂x

⎛
⎝ ∂2

∂x2
√
ne,h√

ne,h

⎞
⎠ = 0, (2)

∂2φ

∂x2
= ne − nh. (3)

Here, the physical quantities ne (nh) and ue (uh) are, respectively, the density and the
velocity of electrons (holes). φ is the electrostatic potential. In Equation (2), on the left-hand
side, the fourth term is the exchange - correlation force between the identical particles
when their wave functions overlap because of the high number density of the electrons
and holes, the fifth term is the degenerate pressure due to the high number density of the
electrons and holes, and the last term is the quantum recoil force associatedwith the Bohm
potential due to the electrons/holes tunneling through a potential barrier. At equilibrium,
we have ne0 = nh0 = n0, where ne0 (nh0) is the unperturbed electron (hole) density and
n0 is a common density. Here, the exchange - correlation potential for electrons (holes) is
written as [13]

Vxce(h)
(
= 0.985(e2/ε)n1/3e(h)

[
1 +

(
0.034/a∗

Be(h)n
1/3
e(h)

)
ln
(
1 + 18.376a∗

Be(h)n
1/3
e(h)

)])
,

where a∗
Be = ε�2/m∗

ee
2( a∗

Bh = ε�2/m∗
he

2) is the effective Bohr radius for electrons(holes),
ε is the dielectric constant of the material, m∗

e(m
∗
h) is the effective mass of electron(hole),

� = h/2π , where h is Planck constant, and e is the magnitude of the electron charge.
µe(= 1), γe(= 1/kBTFe), σe(= (π/3)1/3(π�

2/2m∗
e)(n

2/3
e0 /kBTFe)) and He(= �ωpe/2kBTFe)

for electrons and µh(= µ = m∗
e/m

∗
h), γh(= µ/kBTFh), σh(= (π/3)1/3(π�

2/2m∗
h)(n

2/3
h0 /kB

TFh)µ) and Hh(= µ�ωph/2kBTFh) for holes, where ωpe(ωph) is the electron (hole) fre-
quency, and kB is Boltzmann constant. ne,h, ue,h,φ, x, and t are, respectively, scaled by
ne0,h0, VFe(=

√
kBTFe/m∗

e), kBTFe/e, λDFe(=
√
kBTFe/4πe2ne0), andω−1

pe (=
√
m∗

e/4πe2ne0).
VFe is the Fermi electron thermal speed, λDFe is the Fermi electron Debye radius, and
TFe(h)(= (�2/2m∗

e(h)kB)(3π
2ne(h)0)

2/3
) is the electron (hole) Fermi temperature in the non-

relativistic and zero-temperature limits.
Now, let us examine the face-to-face collision between electrostatic solitons. We apply

the well-known the EPLK method to obtain the KdV equations [31–34]. The dependent
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variables are expanded as follows:

Y = Y(0) +
∞∑
n=1

ε(n+1)Y(n), (4)

where Y = [ne, nh, ue, uh,φ], and Y(0) = [1 , 1, 0, 0, 0]. Furthermore, the independent vari-
ables are stretched as

ξ = ε(x − λt)+ ε2P(0)(ζ , τ)+ . . . ,

ζ = ε(x + λt)+ ε2Q(0)(ξ , τ )+ . . . ,

τ = ε3t, (5)

where ε is a smallness parameter, which is used to measure the weakness of the nonlinear-
ity, and λ is the wave velocity. Substituting Equations (4) and (5) into Equations (1) – (3),
considering the lowest nonzero order in ε, we obtain the following relations:

n(1)e = −1
(λ2 − χe)

(φ
(1)
1 (ξ , τ)+ φ

(1)
2 (ζ , τ )), (6)

n(1)h = µ

(λ2 − χh)
(φ
(1)
1 (ξ , τ)+ φ

(1)
2 (ζ , τ )) (7)

u(1)e = −λ
(λ2 − χe)

(φ
(1)
1 (ξ , τ)− φ

(1)
2 (ζ , τ )) (8)

u(1)h = µλ

(λ2 − χh)
(φ
(1)
1 (ξ , τ)− φ

(1)
2 (ζ , τ )) (9)

where χe(= αe + βe + σe), χh(= αh + βh + σh), αe(= α1e/3kBTFe), βe(= β1eβ2e/kBTFe),
αh(= α1h/3kBTFe), βh(= µβ1hβ2h/kBTFe), α1e = 0.985(e2/ε)n1/30 , β1e = 0.985x0.034

(e2/εa∗
Be), β2e = 1

3 (18.37 a
∗
Ben

1/3
0 /(1 + 18.37 a∗

Ben
1/3
0 )), α1h = µα1e, β1h = 0.985x0.034

(e2/εa∗
Bh) and β2h = 1

3 (18.37 a
∗
Bhn

1/3
0 /(1 + 18.37 a∗

Bhn
1/3
0 )).

Therefore, for the lowest nonzero order in ε of the Poisson equation, one can obtain the
following wave velocity: λ = √

(µχe + χh)/(1 + µ). Moreover, in the next higher-order of
ε, we can arrive at the following KdV equations:

∂φ
(1)
1

∂τ
+ Aφ(1)1

∂φ
(1)
1

∂ξ
+ B

∂3φ
(1)
1

∂ξ3
= 0, (10)

∂φ
(1)
2

∂τ
− Aφ(1)1

∂φ
(1)
2

∂ζ
− B

∂3φ
(1)
2

∂ζ 3
= 0, (11)

∂P(0)

∂ζ
= −C

2
φ
(1)
2 , (12)

∂Q(0)

∂ξ
= −C

2
φ
(1)
1 . (13)
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where A is the nonlinearity coefficient and B is the dispersion coefficient. The coefficients
A, B and C can be written as

A =
(3λ2−(2χh/3)−ρh)µ2

(λ2−χh)3
− (3λ2−(2χe/3)−ρe)

(λ2−χe)3

(2λ/(λ2 − χe)
2
)+ (2µλ/(λ2 − χh)

2
)
, (14)

B = [1 − (H2
e/(λ

2 − χe)
2
)− (µH2

h/(λ
2 − χh)

2
)]

(2λ/(λ2 − χe)
2
)+ (2µλ/(λ2 − χh)

2
)

, (15)

C =
(λ2+(2χh/3)+ρh)

(λ2−χh)3
− (λ2+(2χe/3)+ρe)

(λ2−χe)3

(2λ/(λ2 − χe)
2
)+ (2µλ/(λ2 − χh)

2
)
, (16)

where, ρe = −(σe/3)+ βeβ2e, and ρh = −(σh/3)+ βhβ2h.
Let us consider φ(1)1 = �1, and φ

(1)
2 = �2. The single-pulse soliton solutions of Equa-

tions (10) and (11)and the corresponding phase shifts are, respectively, written as

�1 = ψ1sech
2

[(
Aψ1

12B

)1/2 (
ξ − 1

3
Aψ1τ

)]
, (17)

�2 = ψ2sech
2

[(
Aψ2

12B

)1/2 (
ζ + 1

3
Aψ2τ

)]
, (18)

�P = ε2 C
(
12Bψ2

A

)1/2

, (19)

�Q = −ε2 C
(
12Bψ1

A

)1/2

. (20)

where ψ1 and ψ2 are the amplitudes of two electrostatic solitons. Equations (10) and (11)
govern the excitation of electrostatic solitons for small and finite amplitudes. Evidently, the
main observations of the experimental data were demonstrated that the lowest-order soli-
ton solutions despised the soliton amplitude by as extremely as 20% [35,36]. Therefore, the
basic features (such as amplitudes, widths, and velocities) may deviate from those experi-
mental results obtained. At this point, studying the nonlinear propagation of electrostatic
solitons based on the higher-order correction would be very instructive.

3. Effects of the higher-order corrections on the nonlinear excitation and
collisions

Now let us investigate the impacts of higher-order corrections on the nonlinear excitation
and collisions of electrostatic solitons in dens semiconductor plasmas. Using the higher-
order corrections, which is a confirmed powerful method [18,19,30]. Therefore, the KdV
equations with the fifth – order dispersion terms are applied [18,19,30]

∂�1

∂τ
+ A�1

∂�1

∂ξ
+ B

∂3�1

∂ξ3
+ ε

∂5�1

∂ξ5
= 0, (21)

∂�2

∂τ
− A�2

∂�2

∂ζ
− B

∂3�2

∂ζ 3
− ε

∂5�2

∂ζ 5
= 0, (22)
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In general, the higher-order equations are well known and are often contained secular
terms. Equations (21) and (22) clearly contain the higher-order dispersion terms. Conse-
quently, we cannot obtain the exact solutions of Equations (21) and (22). On the other hand,
the higher-order soliton solutions are obtained by using a perturbation technique, which
depends mainly on a soliton velocity correction to eliminate the secular terms. Therefore,
the independent variables are given by [18,19,30].

� = ξ −�τ , (23)

Z = ζ +�τ . (24)

We can substitute Equations (23) and (24) into Equations (21) and (22), respectively.

−�
d�1

d�
+ A�1

d�1

d�
+ B

d3�1

d�3 + ε
d5�1

d�5 = 0, (25)

−�
d�2

dZ
+ A�2

d�2

dZ
+ B

d3�2

dZ3
+ ε

d5�2

dZ5
= 0. (26)

Using the perturbation technique, the variables �1(�),�2(Z) and � are expanded as
follows:

�1 = �01 + ε�11 + ε2�21 + . . . , (27)

�2 = �02 + ε�12 + ε2�22 + . . . , (28)

� = �0 + ε�1 + ε2�2 + . . . . (29)

The resulting equations depend on the order of ε . Details are given in Appendix. By apply-

ing the boundary conditions (i.e.�i1,�i2,
d�i1
d� , d�i2

dZ , d
2�i1
d�2 and d2�i2

dZ2
(i = 0,1,2, . . . ), which

vanish at both� and Z = ±∞). For ε0, the electrostatic soliton solutions are written as:

�01 = ψm0sech
2(D�), (30)

�02 = ψm0sech
2(DZ), (31)

where ψm0(= 3�0/A) and D−1 (= √
12B/Aψm0

)
are the amplitude and the width of the

electrostatic soliton. In the first-order (i.e., ε1), after a bit of manipulation, we arrive at

L��11 = (3(Aψm0/3)3/2(−�1 + (Aψm0/3)2)sech
2(D�)

+ (Aψm0/3)7/2(−45sech4(D�)+ 67.5 sech6(D�)))tanh(D�), (32)

LZ�12 = (3(Aψm0/3)3/2(−�1 + (Aψm0/3)2)sech
2(DZ)

+ (Aψm0/3)7/2(−45sech4(DZ)+ 67.5 sech6(DZ)))tanh(DZ). (33)

where the operators L� and LZ are written as

L� = −�0
d
d�

+ A
d�01

d�
+ B

d3

d�3 , (34)

LZ = −�0
d
dZ

+ A
d�02

dZ
+ B

d3

dZ3
. (35)
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It is worth noticing that the operators L� and LZ include the first-order and the third-order
derivatives. Equations (32) and (33) are the inhomogeneous third-order linear differen-
tial equations with respect to �11 and �12, respectively. The homogeneous equations,
L��11 = 0 and LZ�12 = 0, are well known to possess the solutions that proportional
to sech2(D�)tanh(D�) and sech2(DZ)tanh(DZ), respectively. Therefore, the existence of
the terms sech2(D�)tanh(D�) and sech2(DZ)tanh(DZ) in the inhomogeneous terms on
the right-hand side of Equations (32) and (33), respectively, leads to the secularity. In
other words, the right-hand sides of Equations (32) and (33) have secular terms. In order
to remove the secular terms, we can put the coefficients of sech2(D�)tanh(D�) and
sech2(DZ)tanh(DZ) to zero. Thus, we obtain the following relation.

�1 = (Aψm0/3)2 (36)

The solutions of the inhomogeneous equations (i.e. Equations (32) and (33)) without
secularities are given by

�11 = (Aψm0)
2(−0.8333 sech2(D�)+ 1.250 sech4(D�)), (37)

�12 = (Aψm0)
2(−0.8333 sech2(DZ)+ 1.250 sech4(DZ)). (38)

Applying the same strategy, we can proceed to higher-order equations

�2 = 0, (39)

�21 = (Aψm0)
3(0.208sech2(D�)− 3.229sech4(D�)+ 3.229sech6(D�)), (40)

�22 = (Aψm0)
3(0.208 sech2(DZ)− 3.229 sech4(DZ)+ 3.229 sech6(DZ)). (41)

Now, we can combine Equations (32),(33),(36),(37),(38), (40) and (41) into Equations
(23),(24), (27), (28) and (29) to obtain the higher-order soliton solutions of the KdV equa-
tions with fifth-order dispersion terms [18,19,26]. For simplicity, let us consider�1 = �1h,
and�2 = �2h.

�1h(ξ , τ ) = ψ1[α1 + β1εψ1sech
2(�1)+ γ (εψ1)

2sech4(�1)]sech
2(�1), (42)

�2h(ζ , τ) = ψ2[α2 + β2εψ2sech
2(�2)+ γ (εψ2)

2sech4(�2)]sech
2(�2), (43)

where

α1,2 =
(
1 − ε

(
0.833

A ψ1,2

B2

)
+ ε2

(
0.208

(
A ψ1,2

B2

)2
))

,β1,2 =
(
1.250

A

B2
− εψ1,2γ

)
,

γ = 3.320
(
A

B2

)2

�1 =
(
Aψ1

12B

)1/2 (
ξ − 1

3
Aψ1

(
1 − ε

(
Aψ1

3B2

))
τ

)
, and

�2 =
(
Aψ2

12B

)1/2 (
ζ + 1

3
Aψ2

(
1 − ε

(
Aψ2

3B2

))
τ

)
.
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Substituting Equations (42) and (43) into Equations (13) and (14), and after some alge-
braic manipulation, the higher-order leading phase shifts are written as [30].

P(0)h = C
2

(
Aψ2

12B

)−1/2

[K1 + K2tanh(�2)

+ K3tanh
3(�2)+ K4sech

4(�2)+ K5sech
4(�2)tanh

2(�2)], (44)

Q(0)h = C
2

(
Aψ1

12B

)−1/2

[N1 + N2tanh(�1)+ N3tanh
3(�1)

+ N4sech
4(�1)+ N5sech

4(�1)tanh
2(�1)], (45)

where

K1 = ψ2(α2 + 0.666εψ2 β2 + 0.533(εψ2)
2γ ),

K2 = ψ2(α2 + εψ2 β2 + 0.533(εψ2)
2γ ),

K3 = −0.333ε(ψ2)
2β2,

K4 = 0.466ε2(ψ2)
3γ and

K5 = −0.2ε2(ψ2)
3γ ,

N1 = ψ1(α1 + 0.666εψ1β1 + 0.533(εψ1)
2γ ),

N2 = ψ1(α1 + εψ1β1 + 0.533(εψ1)
2γ ),

N3 = −0.333ε(ψ1)
2β1,

N4 = 0.466ε2(ψ1)
3γ and

N5 = −0.2ε2(ψ1)
3γ .

Accordingly, the higher-order phase shifts are given by [30].

�Ph= ε2
2
√
3C
(
B4 − 2

9
2
A2ψ2

2

)
B7/2

√
Aψ2

= �P

(
1 − 0.2222

(
Aψ2

B2

)2
)
, (46)

�Qh = −ε2
2
√
3C
(
B4 − 2

9
2
A2ψ2

1

)
B7/2

√
Aψ1

= −�Q

(
1 − 0.2222

(
Aψ1

B2

)2
)
. (47)

4. The electrostatic soliton energy

A nonlinear medium, such as plasma, famously admits solitary wave solutions. Of course,
this happens due to the balance between nonlinear and dispersive effects of the medium.
The studies of a soliton energy in a nonlinearmedium arewell known to provide a powerful
way to investigate the soliton inplasma.Accordingly, it is instructive at this point to consider
not only the amplitude and trajectory of the electrostatic soliton but also on the lowest-
order and the higher-order electrostatic soliton energies. Clearly, the soliton amplitude is
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the main physical parameter that we employ to obtain the soliton energy. Therefore, the
soliton energy is written as [37,38]:

Ej =
∞
∫

−∞
�2

i (ς)dς , (48)

where the subscript ‘j’ refers to 1S and 2S (1H and 2H) in the lowest (higher)-order (correc-
tion). Moreover, the subscript ‘i’ refers to 1 and 2 in the lowest-order, and 1 h and 2 h in the
higher-order correction. Obviously, we have two solitons, one of which, �1,1h, is traveling
to the right (i.e., ς = �), and the other one, �2,2h, is going to the left (i.e., ς = Z). On one
hand, after performing the integral in Equations (48), by containing the lowest-order soliton
solutions in Equations (17) and (18), one can obtain the lowest-order electrostatic soliton
energy

E1S,2S = 4
3
x widt x (amplitude)2 = 4.62

(
Bψ3

1,2

A

)1/2

, (49)

On the other hand, we can integrate Equation (48) by including the higher-order soliton
solutions �1h and �2h (i.e. Equations (42) and (43), respectively). Thus the higher-order
electrostatic soliton energy is given by

E1H,2H = 13.8564

(
Bψ3

1,2

A

)1/2

×
[

0.3333α21,2 + 0.0533α1,2β1,2ψ1,2 + 0.0045α1,2γ (ψ1,2)
2

+0.0022(β1,2ψ1,2)
2 + 0.0004β1,2γ (ψ1,2)

3 + 0.0001(γψ2
1,2)

2

]
. (50)

Figure 1. The lowest-order soliton (solid curve) and the higher-order soliton (dashed curve) for GaAs
semiconductor.
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Figure 2. The higher-order soliton for GaAs semiconductor with n0 = 1016 cm−3 (dashed curve) and
n0 = 1017 cm−3 (dotted curve).

Figure 3. The higher-order soliton for GaAs semiconductor in the presence of Vxce,h (dashed curve) and
in the absence of Vxce,h (dotted curve).

5. Numerical investigations and discussion

In this work, we have improved the theoretical investigation by studying the influences of
higher-order corrections on the nonlinear excitation and collisions of electrostatic solitons
in dens semiconductor plasmas. Consequently, soliton and higher-order soliton solutions
and phase shifts and higher-order phase shifts have been examined for various physi-
cal parameters in GaAs semiconductors [8,9,17,39] by using ε = 0.1 and ψ1 = −0.05. In
detail, the effects of the mentioned different physical terms are discussed in the following
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Figure 4. The face-to-face collision profiles between two lowest-order electrostatic solitons for GaAs
semiconductor at different times.

Figures: Figure 1 shows the lowest-order and the higher-order electrostatic solitons as a
function of space. It is obvious that the inclusion of higher-order dispersion term causes
an increase in the negative electrostatic soliton amplitude. In other words, of interest is to
note that in the higher-order correction, the electrostatic soliton has more amplitude by
as extremely as 20%. Therefore, the fact that cannot be ignored is that the lowest-order
electrostatic solitons may not only be a real case in semiconductor plasmas, but that the
higher-order electrostatic solitons may also be more realistic in quantum semiconductor
plasmas. Figure 2 presents thewaveformof the electrostatic soliton in the higher-order cor-
rection for different values of the quantum semiconductor plasma number density n0. The
electrostatic soliton waveform increases with the decrease of the quantum semiconduc-
tor plasma number density n0. Figure 3 examines the effect of the presence/the absence of
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Figure 5. The face-to-face collision profiles between two higher-order electrostatic solitons for GaAs
semiconductor at different times.

the exchange–correlationpotentials Vxce,h on thewaveformsof electrostatic solitons. In the
presence of Vxce,h, the amplitude and width of the electrostatic soliton enhance, indicating
strong nonlinearity. Figure 4 demonstrates the time evaluation of the face-to-face collision
of two electrostatic solitons against space for different times. Initially, two electrostatic soli-
tons are far apart and then go ahead towards each other. As time goes on, they will collide,
depart, and then the two electrostatic solitons will regain their original shapes eventually
with various phase shifts. As displayed in Figure 4, one can see that the time evaluations
of the face-to-face collisions are, respectively, demonstrated by negative (positive) values
for the case before (after) collisions. At time = −100, two electrostatic solitons are far from
each other. At time =−50, they will start to collide with each other. At time = 0, two elec-
trostatic solitons combine to form a single soliton. At time = 50, they will start to separate
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Figure 6. The variation of phase shifts with n0 for GaAs semiconductor.

Figure 7. The variation of higher-order phase shift�Ph with n0 for GaAs semiconductor.

from each other. At time = 100, they keep on moving far from each other. Figure 5 illus-
trates the variation of the time evaluation of the face-to-face collision for two higher-order
electrostatic solitons with space for different times. As shown in Figure 5, the collision of
two higher-order electrostatic solitons is similar to those in Figure 4. During the collision,
an exchange of energies takes place between the two electrostatic solitons, which leads
to change in their trajectories (i.e. phase shifts). Now, let us examine the effects of physical
parameters, such as n0 and Vxce,h, on the phase shifts. Figure 6 exhibits one of the essential
results of this study. Figure 6 demonstrates that the phase shifts�P and�Ph decrease by
increasing n0. Moreover, the higher-order phase shift�Ph is smaller than the lowest-order
phase shift�P.We can say that the large amplitude leads to the short duration of the single
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Figure 8. The variation of the soliton energy with n0 for GaAs semiconductor, the lowest-order soliton
energy E1S,2S(dotted curve) and the higher-order soliton energy E1H,2H (dashed curve).

peak status, whichmakes the higher-order phase shift�Ph smaller than the phase shift�P.
Figure 7 reflects the interesting impact of the exchange–correlation potentials Vxce,h on the
higher order phase shift�Ph. It is clear that thepresenceof Vxce,h leads to adecrease in�Ph.
It is should be mentioned here that the numerical results in Figures 6 and 7 confirm that
the numerical results obtained in Figures 1–3 are valid and more powerful. To shed more
light on the nature of soliton and its energy, the lowest-order soliton energy E1S,2S and
the higher-order electrostatic soliton energy E1H,2H are displayed in Figure 8. In this figure,
the soliton energy decreases with an increase in the quantum semiconductor plasma num-
ber density n0. Furthermore, the lowest-order soliton energy gradually decreases with an
increase in n0. On the other hand, there is a critical value of n0 (i.e. n0 < 3× 1016 cm−3),
where the higher-order soliton energy drastically increases with a slight decrease in the
quantum semiconductor plasma number density. Furthermore, if n0 > 3× 1016 cm−3, the
higher-order soliton energydecreases smoothlywith an increase in n0. In general, the unex-
pected increase in the solitonenergymay lead todefects inmodern semiconductordevices.
Therefore, one can avoid the rapid increase in the soliton energy by adopting a quantum
semiconductor plasma number density greater than 3× 1016 cm−3 for GaAs. Interestingly,
as a distinct point, Figure 8 demonstrates the importance of the higher-order corrections
to the nonlinear excitation and collisions of electrostatic solitons. Clearly, we can say that
the higher-order soliton energy is highly sensitive andmore accurate in comparison to the
lowest-order soliton energy. Thus, the sensitive response of the higher-order soliton solu-
tions and their energies indicates that the higher- order corrections play vital roles in a
strong understanding of the properties of electrostatic solitons.

In this study, our analysis fundamentally centers on the behavior of electrostatic soli-
tons, their energies and an exchange of energies during the nonlinear propagation and
collisions in dens semiconductor plasmas. A theoretical analysis was improved by adding
the fifth-order dispersion terms of the KdV equations. In the proposed model, using the
plasma parameters for GaAs semiconductors, higher-order solitons are observed to carry
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energy greater than lowest-order solitons. The results, as shown in Figure 8, confirm that
the numerical results obtained in Figures 1 and 6 aremore useful and powerful. We believe
that the current investigation provides a starting point for further discussion and research
in the field of semiconductor plasmas. Finally, due to the effects of higher order correc-
tions, the results give a comprehension view of the understanding of physical scenarios in
quantum semiconductors.
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Appendix

The equations depending on the order of ε are given

ε0 : −�0
d�01

d�
+ A�01

d�01

d�
+ B

d3�01

d�3 = 0,

ε0 : −�0
d�02

dZ
+ A�02

d�02

dZ
+ B

d3�02

dZ3
= 0,

ε1 : L��11 = �1
d�01

d�
− d5�01

d�5 ,

ε1 : LZ�12 = �1
d�02

dZ
− d5�02

dZ5
,

ε2 : L��21 = �1
d�11

d�
+�2

d�01

d�
− A�11

d�11

d�
− d5�11

d�5 ,

ε2 : LZ�22 = �1
d�12

dZ
+�2

d�02

dZ
− A�12

d�12

dZ
− d5�12

dZ5
,


	1. Introduction
	2. Governing equations
	3. Effects of the higher-order corrections on the nonlinear excitation and collisions
	4. The electrostatic soliton energy
	5. Numerical investigations and discussion
	Acknowledgments
	Disclosure statement
	Funding
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [493.483 703.304]
>> setpagedevice


