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Abstract This paper employs the new robust solver to retrieve exact solutions to a Kaup–
Newell model equation and the nonlinear coupled Konno–Oono equation. This solver yields
the closed formula for the solutions. Different types of travelling wave solutions, i.e., rational
function, hyperbolic function and trigonometric function solutions with many capricious
parameters are revealed. Subsequently, by utilizing Matlab 18 we plot 2D and 3D surfaces
of obtained analytical solutions for suitable values of the free parameters. The depiction of
the solver is direct, vital, sturdy and can be applied to other nonlinear partial differential
equations. We also show that some proposed rational solutions can be rapprochement with
some known probability distributions.

1 Introduction

The nonlinear partial differential equations (NPDEs.) have become most examined subject of
all-embracing studies in several branches of applied science, such as fluid mechanics, optics,
ecology, engineering, electromagnetic theory, chemical physics, plasma physics, solid state
physics, [1–10]. Due to the complexity of the nonlinear wave equations, there is no unified
technique to obtain all solutions of NPDEs. Namely, many new techniques have been suc-
cessfully developed by diverse groups of mathematicians and physicists, such as: tanh–sech

method [11], first integral method [12], (G
′

G )− expansion method [13], modified Kudryashov
method [14], sub-equation method [15], variational iteration method [16], exponential func-
tion method [17], fractional sub-equation method [18], Riccati–Bernoulli sub-ODE method
[19], homotopy perturbation [20].

Suppose the NPDEs,

ϒ(u, ux , ut , uxx , uxt , utt , ...) = 0. (1.1)
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Utilizing the wave transformation:

u(x, t) = U (ζ ), ζ = x − wt, (1.2)

Eq. (1.1) reduced to the following ODE:

�
(
U,U ′,U ′′,U ′′′, ...

) = 0. (1.3)

It is well known that there are many models of NPDEs (1.1) in applied science converted to
the following ODE:

αU ′′ + βU 3 + γU = 0, (1.4)

see [21–30] and so on. Eq. (1.4) symbolizes a Hamiltonian system with many vital applica-
tions [31]. As a result of the importance of Eq. (1.3), we introduced the sturdy solver for the
widely used NPDEs [3], using RB sub-ODE method [19].

The dimensionless form of Kaup–Newell equation (KNE) is given by [32–34]

χt + iaχxx + b
( | χ |2 χ

)
x = 0 i = √−1, (1.5)

where a, b ∈ R−{0}, represent the parameter of group velocity dispersion and the nonlinear-
ity coefficient, respectively. Here, χ(x, t) denotes the magnetic field transverse component
to lowest order [35]. This equation was defined as an alternative model to the nonlinear
Schrödinger equation, see [36]. Biswas et al. [32] applied the modified simple equation
method and trial equation approach to give dark, bright and singular solitons to Eq. (1.5).
Biswas et al. [33] employed the extended trial function method to get sub-pico-second opti-
cal soliton solutions of Eq. (1.5). Souleymanou et al. [34] considered the extended direct
algebraic method to give exact solutions to Eq. (1.5).

The nonlinear coupled Konno–Oono (CKO) equation was presented by Konno and Oono
[37]:

qxt − 2Lq rxx − 2Mq sx + N (rs)x = 0,

rxt − 2Lr rx − 2M(2qqx + rx s) − 2N (q)xr = 0,

sxt − 2Ms sx − 2L(2qqx + rsx ) − 2Ns(q)x = 0,

(1.6)

where L , M and N are constants. This system has been scrutinized as applications for current-
filed string interacting with an external magnetic field [37–39], and the parallel transport
of each point of the curve along the direction of time where the connection is magnetic-
valued [40]. Koçak et al. [41] obtained trawling wave solution to CKO equations utilizing
the modified exponential function method.

In this paper, we consider a special case of system (1.6), which is a new Konno–Oono
equation system [42–45]:

φxt − 2φ ψ = 0,

ψt + 2φφx = 0.

(1.7)

In recent years, this system has gained a significant attention and has been the subject of
various studies, like tanh-function method & extended tanh-function method [42], the sine-
Gordon expansion method [43], the extended exp function method [44] and the external trial
equation method [45].
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The application in the field of probability theory has very prominence in the recently
few years, attaching some of the obtained solutions with some known probability density
functions such as t-distribution gives us more information about the properties and behavior of
the solution. We show that the rational solutions form some probability function distributions
such as Beta distribution, Gamma distribution, t-distribution,... etc., with fixed parameters.
In this work, we can see that the solution (4.7) associated with t-distribution with parameter
k = 3.

This article is ordered as follows. Section 2, gives the robust unified solver for the equation
αU ′′ + βU 3 + γU = 0. Section 3 introduces the solutions to the KNE equation. Section 4
presents the solutions to the new CKO equation. Section 5 compares the new CKO rational
function solution with an associated statistical distribution. Section 6 presents the physical
explanation for the obtained results. Conclusions will appear in Sect. 7.

2 Unified solver

Here, we present the unified solver concerning the following equation

α�′′ + β�3 + γ� = 0. (2.1)

According to the introduced solver in [3], the solutions to Eq. (2.1) are
Rational function solutions: (at γ = 0)

U1,2(x, t) =
(

∓
√−β

2α
(ζ + μ)

)−1

. (2.2)

Trigonometric function solutions: (at γ
α

< 0)

U3,4(x, t) = ±
√

γ

β
tan

(√−γ

2α
(ζ + μ)

)

(2.3)

and

U5,6(x, t) = ±
√

γ

β
cot

(√−γ

2α
(ζ + μ)

)

. (2.4)

Hyperbolic function solutions: (at γ
α

> 0)

U7,8(x, t) = ±
√−γ

β
tanh

(√
γ

2α
(ζ + μ)

)
(2.5)

and

U9,10(x, t) = ±
√−γ

β
coth

(√
γ

2α
(ζ + μ)

)
, (2.6)

where μ is arbitrary constant. In the next sections, we employ the unified solver in order to
solve the KNE equation and the new Konno–Oono equation system.
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3 Solutions of the KNE equation

Using the transformation

χ(x, t) = ei(−kx+wt+ς)V (ζ ), ζ = x − ν t, (3.1)

where k, w and ς denote, respectively, soliton frequency, soliton wave number and soliton
phase. Setting (3.1) into (1.5), the real and imaginary components give rise to

ν = 2ak + 3bV 2 (3.2)

and

aU ′′ − bkV 3 + (w − ak2)V = 0, (3.3)

respectively. Comparing Eq. (3.3) with Eq. (2.1) yields α = a, β = −bk and γ = w − ak2.
Thus, the solutions of Eq. (1.5) are:

The rational solutions of Eq. (3.3) are

V1,2(x, t) =
(

∓
√
bk

2a
(x − ν t + μ)

)−1

. (3.4)

As a result, the solutions of Eq. (1.5), using Eq. (3.1), are

χ1,2(x, t) = ei(−kx+wt+ς)

(

∓
√
bk

2a
(x − ν t + μ)

)−1

. (3.5)

The trigonometric solutions of Eq. (3.3) are

V3,4(x, t) = ±
√
ak2 − w

bk
tan

⎛

⎝

√
ak2 − w

2a
(x − ν t + μ)

⎞

⎠ (3.6)

and

V5,6(x, t) = ±
√
ak2 − w

bk
cot

⎛

⎝

√
ak2 − w

2a
(x − ν t + μ)

⎞

⎠ . (3.7)

As a result, the solutions of Eq. (1.5), using Eq. (3.1), are

χ3,4(x, t) = ± ei(−kx+wt+ς)

√
ak2 − w

bk
tan

⎛

⎝

√
ak2 − w

2a
(x − ν t + μ)

⎞

⎠ (3.8)

and

χ5,6(x, t) = ± ei(−kx+wt+ς)

√
ak2 − w

bk
cot

⎛

⎝

√
ak2 − w

2a
(x − ν t + μ)

⎞

⎠ . (3.9)

The hyperbolic solutions of Eq. (3.3) are

V7,8(x, t) = ±
√

w − ak2

bk
tanh

⎛

⎝

√
w − ak2

2a
(x − ν t + μ)

⎞

⎠ (3.10)
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and

V9,10(x, t) = ±
√

w − ak2

bk
coth

⎛

⎝

√
w − ak2

2a
(x − ν t + μ)

⎞

⎠ . (3.11)

As a result, the solutions of Eq. (1.5), using Eq. (3.1), are

χ7,8(x, t) = ± ei(−kx+wt+ς)

√
w − ak2

bk
tanh

⎛

⎝

√
w − ak2

2a
(x − ν t + μ)

⎞

⎠ (3.12)

and

χ9,10(x, t) = ± ei(−kx+wt+ς)

√
w − ak2

bk
coth

⎛

⎝

√
w − ak2

2a
(x − ν t + μ)

⎞

⎠ . (3.13)

4 Solutions of the new CKO equation

Now, to solve Eq. (1.7), using the transformation

φ(x, t) = �(ζ), ζ = c(x − λ t)

ψ(x, t) = �(ζ), ζ = c(x − λ t),
(4.1)

where c is the wave number and λ is the wave velocity. Plugging (3.1) into (1.5) yields

−λ c2�′′ − 2�� = 0, (4.2)

−λ c�′ + 2c��′ = 0, (4.3)

Integrating Eq. (4.3) with respect to ζ gives

� = 1

λ
(�2 + η), (4.4)

where η is an integral constant. Setting Eq. (4.4) into Eq. (4.3) gives

λ2 c2�′′ + 2�3 + 2η� = 0. (4.5)

Comparing Eq. (4.5) with Eq. (2.1) yields α = λ2 c2, β = 2 and γ = 2η. Thus, the solutions
of Eq. (1.7) are:

The rational solutions of Eq. (1.7) are

φ1,2(x, t) =
(

∓ i

λ c
(c(x − λ t) + μ)

)−1

. (4.6)

Utilizing Eq. (4.4) gives

ψ1,2(x, t) = 1

λ

⎛

⎝

((
∓ i

λ c
(c(x − λ t) + μ)

)−1
)2

+ η

⎞

⎠ . (4.7)

The trigonometric solutions of Eq. (1.7) are

φ3,4(x, t) = ±√
η tan

(√−η

λ c
(c(x − λ t) + μ)

)
(4.8)
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and

φ5,6(x, t) = ±√
η cot

(√−η

λ c
(c(x − λ t) + μ)

)
. (4.9)

Utilizing Eq. (4.4) gives

ψ3,4(x, t) = 1

λ

((√
η tan

(√−η

λ c
(c(x − λ t) + μ)

))2

+ η

)

(4.10)

and

ψ5,6(x, t) = 1

λ

((√
η cot

(√−η

λ c
(c(x − λ t) + μ)

))2

+ η

)

. (4.11)

The hyperbolic solutions of Eq. (1.7) are

φ7,8(x, t) = ±√−η tanh

(√
η

λ c
(c(x − λ t) + μ)

)
(4.12)

and

φ9,10(x, t) = ±√−η coth

(√
η

λ c
(c(x − λ t) + μ)

)
. (4.13)

Utilizing Eq. (4.4) gives

ψ7,8(x, t) = 1

λ

((√−η tanh

(√
η

λ c
(c(x − λ t) + μ)

))2

+ η

)

(4.14)

and

ψ9,10(x, t) = 1

λ

((√−η coth

(√
η

λ c
(c(x − λ t) + μ)

))2

+ η

)

. (4.15)

5 Statistical evidence

In applied statistics, the primary application of t-distribution for determining confidence
intervals and hypothesis testing. The density function of t-distribution is

fk(y) = �
( k+1

2

)

√
kπ�

( k
2

)
(

1 + y2

k

)−
(
k+1

2

)

, (5.1)

where � is the gamma function defined by:

�(t) = (t − 1)! =
∫ +∞

−∞
xt−1e−xdx, �

(
1

2

)
= √

π

and k is non-negative parameter. We can see that the solution (4.7), since η = 0, can be
written as following

ψ1,2(x, t) = −λc2(c(x − λt) + μ)−2. (5.2)
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Fig. 1 T-distribution with parameter k = 3

This result adjusted to t-distribution with parameter k = 3, if we assume the random variable
y(x, t) satisfies the following y2(x, t) = 3(c(x−λt)+μ)−3, we can also take 2

π
√

3
= −λc2,

then we can write Eq. (5.2) as

ψ1,2(y(x, t)) = �
( 3+1

2

)

√
3π�

( 3
2

)
(

1 + y2

3

)−
(

3+1
2

)

. (5.3)

Figure 1 represents the curve of �(y) as a probability density function of t-distribution.

6 Physical interpretation

Here, we illustrate the applications of the results constructed above. With the aid of the
symbolic Matlab software, we applied the unified solver to construct solutions for a KNE
and the CKO equation. These exact solutions of the proposed equations were given in the
explicit form. Namely, we presented rational function, hyperbolic function and trigonometric
function solutions. These solutions give some wave pictures in applied sciences and describe
complex phenomena, namely in magnetic filed as shown in Figs. 2 and 3 . Indeed, the
hyperbolic function solutions (4.12) and (4.13) represent the ranges and altitudes of seismic
sea waves as shown in Fig. 4. The waves would be more dangerous to the entire world if the
amplitudes of the wave are high. To decrease the disastrous power of such massive natural
disasters or to convert them to useful energy sources, we should consider the mathematical
structures of such natural problems. To understand such possible catastrophes, the best way
is to solve these problems by making use of different approaches and then take necessary
precautions.
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Fig. 2 Shapes of real part of χ = χ7 with k = 0.5, w = 2.4, ς = 1, a = 0.7, b = 1.5, ν = 1.9, μ = 1

Fig. 3 Shape of imaginary part of χ = χ7 with k = 0.5, w = 2.4, ς = 1, a = 0.7, b = 1.5, ν = 1.9, μ = 1

Fig. 4 Graphs of 3D and 2D of φ = φ7 with η = 1.6; λ = 1.8; c = 2.5;μ = 0
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7 Conclusions

In this article, the sturdy unified solver was implemented for the KNE and the CKO equation to
derive the solutions in various forms of traveling waves. This solver presents the closed form
of the solutions, namely, rational function, hyperbolic function and trigonometric function
solutions. We have clarified that the rational function solutions can be rapprochement with
some known probability distributions, which is so interesting application in applied statistic.
Our study shows that the presented solver is a powerful tool for obtaining analytical solutions.
Indeed, this technique can also be applied to other nonlinear partial differential equations.
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