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Abstract A series of novel bidentate azodye quinoline ligands were synthesized with various p-aro-

matic amines like p-(OCH3, CH3, H, Cl and NO2). Novel azodye (HLn) and complexes [Cu(II)/

Ni(II)] of these ligands have been characterized on the basis of elemental analysis, molar conduc-

tance and magnetic measurements, infrared and electronic spectral studies. Suitable structures have

been proposed for these complexes. The synthesized ligands and their metal complexes were

screened for their antimicrobial activity against four local bacterial species, two Gram positive bac-

teria (Bacillus cereus and Staphylococcus aureus) and two Gram negative bacteria (Escherichia coli

and Klebsiella pneumoniae) as well as against four local fungal species; namely Aspergillus niger,

Alternaria alternata, Penicillium italicum and Fusarium oxysporium. The tested compounds have

good antibacterial activity against B. cereus, E. coli and K. pneumoniae. Very low effect was detected

against S. aureus and F. oxysporium. We found that the results of antifungal activity of HLn

revealed that the complexes are more toxic than ligands against fungi due to the transition metal

involved in the coordination. Also Cu2+ complexes are more active than Ni2+ complexes against

B. cereus, E. coli and K. pneumoniae. The size of the clear zone was in the following order p-

(OCH3 < CH3 < H < Cl < NO2) as expected from Hammett’s constants rR.
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1. Introduction

The coordination chemistry of Cu(II)/Ni(II) is more interest-

ing and rather more important because of two main reasons.
The vanadyl complexes have found increasing importance as
a model in biological systems (Sakurai et al., 2003, 2004; Smith

et al., 2002). The coordination number and geometry of this
metal is highly ligand dependent (Holloway and Melnik,
ing Saud University.
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Table 1 Elemental analysis (C, H, S and N)a, color and yield (%) of the ligands.

Compoundb Color Yield (%) Exp. (Calcd.) %

C H N S

HL1 Black 60.4 53.88

(53.48)

3.82

(3.62)

12.21

(11.70)

9.35

(8.91)

HL2 Red 62.0 56.12

(55.98)

3.90

(3.79)

12.72

(12.25)

9.71

(9.33)

HL3 Pale red 64.7 54.87

(54.71)

3.45

(3.34)

13.22

(12.77)

10.10

(9.73)

HL4 Red 68.8 49.64

(49.52)

2.84

(2.75)

11.93

(11.55)

9.21

(8.80)

HL5 Dark red 78.0 48.30

(48.13)

2.72

(2.67)

15.30

(14.97)

8.83

(8.56)

a The excellent agreement between calculated and experimental data supports the assignment suggested in the present work.
b HL1�HL5 are the ligands as given in Fig. 1.
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1985) and vanadyl complexes have been reported to be less
toxic than vanadate ions (Hudson, 1996). Therefore, the Schiff

base complexes of vanadyl ion are topic of many research re-
ports (Maurya and Raiput, 2006; Boghaei et al., 2006). Azo
compounds have gained a paramount attention due to their

use as models for biological systems (Pati, 1975; Pearce
et al., 2001). The driving force for investigating and developing
an understanding in the coordinating behavior and chemical

equilibrium of these novel compounds is based on the impor-
tance of studying the metal–ligand affinities, stereochemistry
and substitution properties of the complexes involved (El-Son-
bati et al., 2004a, 2012a). Efforts have been made to carry out

detailed studies to synthesize and elucidate the structural and
electronic properties of novel families of complexes with quin-
oline derivatives as novel chelating bis-bidentate azodye

models.
(4-alkylphenylazo)-5-sulfo-8-hydroxyquinolines (HLn) and

their related compounds (Fig. 2A0) have been extensively

used as ligands in the transition metal coordination chemis-
try (El-Sonbati et al., 2002a,b, 2004b, 2007). Ease of synthe-
sis, favorable steric arrangement and variability of donor
Please cite this article in press as: Abou-Dobara, M.I. et al., Correlation b
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sites that these ligands possess with suitable constituents,
make this family an excellent candidate for constructing

new families of complexes which are of great intriguing
interest for the coordination chemistry. Although, no struc-
tural chemistry or coordinating and biological studies have

been reported on ligands containing both azo and quinoline
function groups, data from our laboratory (El-Sonbati et al.,
2002a,b, 2004a,b, 2007) have demonstrated that the bis-

bidentate azodye ligands play a key role in making new
complexes with transition metal ions. However, little is
known concerning the constituents of these complexes, as
well as the chemistry involved in their preparation, or the

structure and coordination in such complexes. It has been
shown from the IR spectral data that the hydrogen bonding
plays an important role in biological systems (Pearce et al.,

2001). Due to the higher number of hydrogen bonds, the
Watson–Crick pair of guanine and cytosine is more stable
than the thymine–adenine complex (Ebert, 1993). Moreover,

Jorgensen and El-Sonbati et al. (Jorgensen and Pranata,
1990; El-Sonbati et al., 2002a, 2004b, 2007, 2010a, 2012b)
found out that the stability of multiple hydrogen bonded
etween the structure and biological activity studies of supramolecular
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Figure 2 Representation of the dimeric structure and intramolecular hydrogen bond.
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‘‘dimers’’ depends not only on the number of hydrogen
bonds but also on the hydrogen bonding pattern. The
importance of clarifying the structure and stability of hydro-
gen-bonded complexes has opened up an area of surface sci-

ence that has attracted a considerable attention in the
environmental chemistry.

8-Hydroxyquinoline is well known as an analytical reagent

(Jeffery et al., 1989; Ivanor and Metkina, 1978). Its various
derivatives are also useful in pharmaceutical compounds
(Bruckhalter et al., 1954). Several azo dyes based on 8-quino-

linol (8-HQ) are also reported for dyeing of textiles as well as
their chelating properties. Various derivatives based on quino-
linol have also been reported for their chelating property. The
literature survey reveals that the azo dyes based on sulfanil-

amide of 8-HQ have not been reported so far.
In this paper, we investigate the supramolecular chemistry

of azo 8-hydroxyquinoline derivatives regarding the metal

coordination as well as the behavior of hydrogen bonding of
these molecules. These are achieved by reporting the studies
of (i) the synthesis of novel (4-alkylphenylazo)-5-sulfo-8-

hydroxyquinoline (HLn) ligands, (ii) the synthesis of Cu(II)/
Ni(II) complexes derived from these ligands, (iii) investigating
Please cite this article in press as: Abou-Dobara, M.I. et al., Correlation b
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the stereochemistry of the complexes based on the electronic
spectra and other measurements, (iv) determining the vibra-
tional mode of bonding, stability and structures of the hydro-
gen-bonding complexes, (v) studying the antimicrobial activity

of (HLn) and their complexes, and (vi) comparing antimicro-
bial activity results of (HLn) and their complexes with the stan-
dard antibacterial and antifungal drugs.

In addition to the above mentioned aims, we will discuss
the previous studies of hydrogen bonding (Albrecht et al.,
2000) and compare them with the results of the present paper

in order to provide a better explanation and justification to the
chemical behavior of such complexes and biologically allowing
the reversible formation of aggregates which are non-cova-
lently linked.

2. Experimental

All the chemicals used were of British Drug House (BDH)
quality. 5-sulfo-8-Hydroxyquinoline (sulfooxine) was prepared
by the method outlined by our group. The experimental tech-
nique has been described previously (El-Sonbati et al., 2002a,b,

2004a,b, 2007, 2010a,b).
etween the structure and biological activity studies of supramolecular
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Figure 3 Intermolecular hydrogen bond.
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2.1. Synthesis of ligands

(4-Alkylphenylazo)-5-sulfo-8-hydroxyquinolines (HLn) were

typically prepared by adding 25 mL of distilled water contain-
ing hydrochloric acid (12 M, 2.68 mL, 32.19 mmol) to aniline
(10.73 mmol) or p-derivatives. To the resulting mixture, stirred
and cooled to 0 �C, a solution of sodium nitrite (10.73 mmol,

in 20 mL of water) was added dropwise. The so-formed diazo-
nium chloride was consecutively coupled with an alkaline solu-
tion (sulfonate) (10.73 mmol) in 20 mL of ethanol containing

602 mg (10.73 mmol) of potassium hydroxide. Immediately,
the formed red precipitate was filtered and washed several
times with water. The obtained crude product was purified

by crystallization from hot ethanol (yield � 60–80%). The
analytical data were confirmed by expected composition (Ta-
ble 1). The ligands were also characterized by 1H NMR and

IR spectroscopy.
The synthesis of ligand is summarized in Fig. 1. However a

detailed procedure is given in the following reactions:
The resulting ligands are:

� (4-Methoxyphenylazo)-5-sulfo-8-hydroxyquinoline (HL1).
� (4-Methylphenylazo)-5-sulfo-8-hydroxyquinoline (HL2).

� (4-Phenylazo)-5-sulfo-8-hydroxyquinoline (HL3).
� (4-Chlorophenylazo)-5-sulfo-8-hydroxyquinoline (HL4).
Please cite this article in press as: Abou-Dobara, M.I. et al., Correlation b
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� (4-Nitrophenylazo)-5-sulfo-8-hydroxyquinoline (HL5).

2.2. Synthesis of metal complexes

The appropriate ligand (0.01 mol) dissolved in ethanol
(20 cm3) was added dropwise into an ethanolic solution

(20 cm3) of metal salt (0.01 mol) with stirring. After the com-
plete addition, 0.50 g of sodium acetate was added to the solu-
tion and the reaction mixture was refluxed for 2 h. The

solution, thus obtained was concentrated to half of its original
volume by evaporation using a hot plate and allowed to cool to
room temperature. During this, a microcrystalline solid was

separated, which was isolated by filtration, washed with hot
water followed by ethanol and ether and dried in air.

2.3. Microbiological investigation

For this investigation the agar well diffusion method was ap-
plied (Alghool et al., 2010). The antibacterial activities of the
investigated compounds were tested against two local Gram

positive bacteria (Bacillus cereus and Staphylococcus aureus)
and two local Gram negative bacteria (Escherichia coli and
Klebsiella pneumoniae) on the nutrient agar medium. Also, it

was tested against four local fungal species (Aspergillus niger,
etween the structure and biological activity studies of supramolecular
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Table 2 Antibacterial activities of (4-alkylphenylazo)-5-sulfo-8-hydroxyquinoline and its metal complexes. Inhibition zone was

recorded in mm.

Compound Concentration lg/ml Gram positive bacteria Gram negative bacteria

Bacillus cereus Staphylococcus aureus Escherichia coli Klebsiella pneumoniae

HL1 50 �ve �ve 5 3

100 2 �ve 4 3

150 2 1 4 4

CuL1 50 �ve �ve �ve 4

100 �ve �ve �ve 4

150 7 �ve �ve 3

NiL1 50 1 1 1 �ve
100 1 �ve 2 �ve
150 1 1 2 �ve

HL2 50 �ve �ve 3 3

100 �ve �ve 4 �ve
150 2 �ve 4 �ve

CuL2 50 5 �ve 3 4

100 �ve �ve 3 3

150 �ve �ve �ve 4

NiL2 50 1 �ve 2 �ve
100 �ve �ve �ve �ve
150 �ve �ve 1 �ve

HL3 50 2 �ve 2 2

100 2.5 �ve 2 2

150 3 1 2 4

CuL3 50 2 1 4 4

100 2 1 3 3

150 2 1 3 3

NiL3 50 �ve 1 1 �ve
100 1 1 1 �ve
150 1 1 1 �ve

HL4 50 4 1 2.5 3

100 5 �ve 2 4

150 2 �ve 2 4

CuL4 50 2.5 �ve 3 3

100 3 �ve 3 3

150 �ve �ve 4 3

NiL4 50 �ve �ve �ve �ve
100 1 �ve 3 �ve
150 2 �ve 3 �ve

HL5 50 �ve 1 3 3

100 3 1 3 2

150 4 �ve 3 3

CuL5 50 3 �ve 4.5 3

100 3 �ve 2 3

150 4 �ve 2 4

NiL5 50 �ve �ve 2 �ve
100 1 �ve 3 2

150 2 �ve 2 �ve

Penicillin 50 1 2 1 �ve
100 3 2 3 �ve
150 3 2 3 �ve
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Alternaria alternata, Penicillium italicum and Fusarium oxyspo-
rium) on the DOX agar medium. The concentrations of each

solution were 50, 100 and 150 lg/ml. By using a sterile cork
borer (10 mm diameter), wells were made in agar medium
Please cite this article in press as: Abou-Dobara, M.I. et al., Correlation b
coordination azodye compounds. Arabian Journal of Chemistry (2013),
plates previously seeded with the test organism. 200 ll of each
compound was applied to each well. The agar plates were kept

at 4 �C for at least 30 min to allow the diffusion of the com-
pound. The plates were then incubated at 37 �C or 30 �C for
etween the structure and biological activity studies of supramolecular
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Figure 4 Effect of HL2 and HL5 on growth of Klebsiella

pneumoniae on the nutrient agar medium using concentrations

a= 50 lg/ml and b= 150 lg/ml.

Figure 5 Effect of CuL2 and CuL5 on growth of Klebsiella

pneumoniae on the nutrient agar medium using concentrations

a= 50 lg/ml and b= 150 lg/ml.
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bacteria and fungi respectively. Penicillin and miconazole were
used as antibacterial and antifungal substrates respectively.

The diameters of inhibition zone were determined after 24 h
and 7 days for bacteria and fungi, respectively.

2.4. Measurements

Elemental microanalyses of the separated ligands and solid che-
lates for C, H, S, and N were performed in the Microanalytical
Center, Cairo University, Egypt. The analyses were repeated

twice to check the accuracy of the analyzed data. The 1H-
NMR spectrumwas obtained with a JEOLFX90 Fourier trans-
form spectrometer withDMSO-d6 as the solvent andTMS as an

internal reference. Infrared spectra were recorded as KBr pellets
using a Pye Unicam SP 2000 spectrophotometer. Ultraviolet–
Visible (UV–Vis) spectra of the compounds were recorded in

nuzol solution using a Unicom SP 8800 spectrophotometer.

3. Results and discussion

3.1. Structure and stability

The presence of a sulfonate group in the quinoline ring confers
special characteristics to the ligand, introducing changes in
Please cite this article in press as: Abou-Dobara, M.I. et al., Correlation b
coordination azodye compounds. Arabian Journal of Chemistry (2013),
spectroscopic and structural properties of the metallic
complexes.

It has been known that 8-hydroxyquinoline exists, in solu-

tion, in a monomer dimer equilibrium (El-Sonbati et al., 2002,
2010a, 2012b; Cook and Rotello, 2002; Albrecht et al., 1999).
Our results of this paper suggest that in the monomeric form a

strong intramolecular hydrogen bond is present. This is in
agreement with previous results (Suzuki, 1967). The two such
monomers lead to the dimer by forming an additional hydro-

gen bond yielding the bifurcated hydrogen bonds and H–N–H
nitrogen bridges (Fig. 2A).

In addition to the two bifurcated intra/intermolecular
OH . . .N hydrogen bonds (Figs. 1 and 3), two more intermo-

lecular hydrogen bonding interactions are observed between
nitrogen atom of the azo/azomethine group and hydrogen
atom of the hydroxyl group. This additional H-bond does

not influence the intramolecular distance which shows a band
at a lower frequency than the intermolecular interaction. Rea-
son for this behavior might be due to the additional H-bond

which influences the hydrogen bonding ability of the sulfonyl
group by electronic and/or steric factors. The overall structure
of the dimer is close to planar with a slight shift of the two

quinoline units from the plane. The two hydroxyquinoline
units of the dimer (Fig. 2B0 and C2) are in one plane. The inter-
molecular as well as intramolecular hydrogen bonding occur
between the hydroxyl group and the quinoline nitrogen atom.

The intermolecular hydrogen bond distance is shorter than the
intramolecular one. This observation was also reported for
other 8-hydroxyquinoline dimers and might be due to an unfa-

vored small O–H–N angle for the intramolecular interaction
(Jeffery et al., 1989; Cook and Rotello, 2002; Albrecht et al.,
1999).

Hydrogen bonding represents one of the most versatile
interactions that could be used for molecular recognition. In
view of the large differences in the substituent effects (e.g.,

the Hammett-type substituent constants for p-positions and
sulfonyl group); it might be possible to tune the strength of
the hydrogen bond effectively by linking the hydrogen-bond-
ing site to a reaction center through a conjugated spacer,

and by altering the charge state of the reaction center in the
solution. At the hydrogen-bonding end, azo/azomethine is
used as a proton acceptor to form a hydrogen bond with the

OH group of ligand.
An electron-withdrawing bridge would be expected to in-

crease the acidity of the proton donor and hence increase its

binding ability. As the electron-withdrawing character of an
azo group is relevant to the interesting signal-amplifying
behavior (Suzuki, 1967) the results indicate that in the HLn,
the effects of the bridges are electron-withdrawing and elec-

tron-donating, respectively. Accordingly, the efficiency of
sp2-hybridized bridges is N‚N > C‚N.

Coggeshall and El-Sonbati et al. (Coggeshell, 1947; El-Son-

bati et al., 2002a, 2004a, 2007, 2010a, 2012b) found three kinds
of bonded –OH structures on the basis of the frequencies: (i)
only oxygen is in the bridge while hydrogen is free, (ii) a poly-

mer chain is formed in which both hydrogen and oxygen atoms
participate in the hydrogen bond, and (iii) dimer associates are
formed.

Intramolecular hydrogen bond between nitrogen atom of
C‚N(CNPy)/–N‚N– (five/six-membered) system and hydro-
gen atom of phenolic hydroxyl hydrogen atom and hydrogen
(C8–OH) are illustrated in Fig. 2B, C and C0. Intermolecular
etween the structure and biological activity studies of supramolecular
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Figure 6 Antibacterial activity data of (4-alkylphenylazo)-5-sulfo-8-hydroxyquinolines (HLn) and their metal complexes. Inhibition

zones were recorded as mm.
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hydrogen bonding can form a cyclic dimer through the
O�H—OH type between C8–OH/‚N of one molecule and

C8–OH/N‚N group of another one (Fig. 3H, G and F)
and/or - - - -N type between C8–OH of one molecule and
CNpy/–N‚N– of another (Fig. 3D).

In general, hydrogen bonds involving OH groups are pro-
ton donors and their O atoms are proton acceptors. Both intra
and intermolecular OH–N may form a number of structures in

a simultaneous equilibrium.
Please cite this article in press as: Abou-Dobara, M.I. et al., Correlation b
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3.2. 1H NMR spectra

The 1H NMR spectra of all the ligands were recorded in
DMSO-d6 at room temperature. The signal due to methyl
and methoxy proton appeared as a singlet at 1.55 and

3.84 ppm, respectively. In the aromatic region, a few doublets
and in few cases some overlapping doublets/multiplets are ob-
served in the range d 6.78–8.40 ppm. These doublets/multiplets
are due to aryl protons of three benzene rings. Another singlet

corresponding to one proton for all compounds is observed in
the range d � 9.2–10.40 ppm. This signal disappeared when a
D2O exchange experiment was carried out. It can be assigned

either to OH or NH, in either case it is strongly deshielded be-
cause of hydrogen bonding with the other atom (N/O) (Figs. 2
and 3). It may be noted that the integration of this signal per-

fectly matches with one proton and there is no other frag-
ment(s) of this signal, which suggest that only one
tautomeric form of the ligand exists in the solution under the
experimental conditions. Comparing with the solid state study,

we prefer to assign this signal to OH, however, assignment of
this peak to NH cannot be ruled out provided solid state struc-
tural evidence is not considered (Jadeja et al., 2004). As re-

ported in previous studies (El-Sonbati et al., 2011; Shoair
et al., 2001), this hydrogen bonding lead to a large deshielding
of these protons. The shifts are in the sequence: p-NO2 > p-

Cl > H> p-OCH3 > p-CH3. The appearance of signals due
to HC‚N [�8.94 ppm (1H)] protons of the same positions
in the ligand and its diamagnetic complexes shows the non-

involvement of this group in coordination (Shoair et al., 2001).
etween the structure and biological activity studies of supramolecular
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Table 3 Antifungal activities of (4-alkylphenylazo)-5-sulfo-8-hydroxyquinoline and its metal complexes. Inhibition zone were

recorded as mm.

Compound Concentration lg/ml Fusarium oxysporium Penicillium italicum Aspergillus niger Alternaria alternata

HL1 50 1 �ve �ve �ve
100 1.5 �ve 4 �ve
150 1.5 �ve 1 �ve

CuL1 50 1 �ve �ve �ve
100 �ve �ve �ve �ve
150 �ve �ve �ve �ve

NiL1 50 �ve �ve �ve �ve
100 1 �ve �ve 1

150 1 �ve �ve 2

HL2 50 �ve �ve �ve �ve
100 1.5 �ve �ve �ve
150 1 �ve �ve �ve

CuL2 50 1.5 �ve �ve �ve
100 �ve �ve �ve �ve
150 1 �ve �ve �ve

NiL2 50 �ve �ve �ve �ve
100 �ve �ve �ve �ve
150 �ve �ve �ve �ve

HL3 50 2 �ve �ve �ve
100 2 �ve �ve �ve
150 2 �ve �ve �ve

CuL3 50 2 �ve �ve �ve
100 1 �ve �ve �ve
150 1 �ve �ve �ve

NiL3 50 �ve �ve �ve �ve
100 �ve �ve �ve �ve
150 �ve �ve �ve �ve

HL4 50 �ve �ve �ve �ve
100 �ve �ve �ve �ve
150 1.5 �ve �ve 1

CuL4 50 �ve �ve �ve �ve
100 1 �ve �ve �ve
150 2 �ve �ve �ve

NiL4 50 1.5 �ve �ve �ve
100 �ve �ve �ve �ve
150 �ve �ve �ve �ve

HL5 50 1 �ve �ve 2

100 1 �ve �ve 3

150 2 �ve �ve 1

CuL5 50 1.5 �ve �ve �ve
100 �ve �ve �ve �ve
150 �ve �ve �ve �ve

NiL5 50 �ve �ve �ve �ve
100 �ve �ve 3 �ve
150 �ve �ve �ve �ve

Miconazole 50 2 1 1 5

100 3 1 3 6

150 3 2 4 6
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3.3. Electronic spectra

HLn exhibited bands at 32,500–32,150 cm�1 (CN)
(p–p*), 33,450–33,340 cm�1 (H-bonding and association),
Please cite this article in press as: Abou-Dobara, M.I. et al., Correlation b
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40,038–39,460 cm�1 (phenyl) (Ph–Ph*, p–p*) and 29,340–
29,230 cm�1 transition of phenyl rings overlapped by a com-

posite broad (p–p*) of the azo structure. The band due to
the n fi p* transition obtained in the visible region is
etween the structure and biological activity studies of supramolecular
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Figure 8 The relation between ionic radius and inhibition zone (mm) (In the case of using concentrations a= 50 lg/ml and b= 150 lg/
ml against Escherichia coli).

Figure 9 Antifungal activity data of (4-alkylphenylazo)-5-sulfo-8-hydroxyquinolines (HLn) and their metal complexes. Inhibition zones

were recorded as mm.
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associated mainly with the color of the respective compound
(El-Sonbati et al., 2012b). The band due to p fi p* transition
moves to lower energy. These shifts or the disappearance of

the bands is indicative of coordination of the ligands to
M(II). The position of their bands varied from one dye to
the other which may be attributed to the p-phenylazo substitu-

ent’s variable donating power.
In general, most of the azo compounds give spectral local-

ized bands in the wavelength range 46,620–34,480 cm�1 and
Please cite this article in press as: Abou-Dobara, M.I. et al., Correlation b
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31,250–270, 370 cm�1. The first region is due to the absorption
of the aromatic ring compared to 1Bb and

1Lb of mono substi-
tuted benzene and the second region is due to the conjugation

between the azo group and the aromatic nuclei with intermo-
lecular charge transfer resulting from p-electron migration to
the diazo group from electron donating substituents. The p-

substituents increase the conjugation with a shift to a longer
wavelength. Most of the simple p-substituted compounds are
in the azoid form in cyclohexane and alcohols. The substituted
etween the structure and biological activity studies of supramolecular
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against Bacillus cereus).
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effect is related to the Hammett’s constant values (El-Sonbati
et al., 2010c, 2012b). The position of the p–p* transition of the
azo groups remains one of the most interesting unanswerable
questions of molecular spectroscopy. For azo benzenes, as

the possibilities of the mesomerism became greater, the stabil-
ization of the excited state is increased relative to that of the
ground state and a bathochromic shift of the absorption bands

follows (El-Sonbati et al., 2010c). Based on the MO theory the
energy terms of the molecular orbital became more closely
spaced as the size of the conjugated system increases (Jean,

2004). Therefore, with every additional conjugated double
bond the energy difference between the highest occupied and
the lowest vacant p-electron level became smaller and the

wavelength of the first absorption band corresponding to this
transition is increased. The azo group can act as a proton
acceptor in hydrogen bonds (El-Sonbati et al., 2010c, 2012b).
The role of hydrogen bonding in azo aggregation has been ac-

cepted for some time.

3.4. Microbiological investigation

The antimicrobial activity of HLn ligand was tested against
bacteria and fungi; we used more than one test organism to in-
Please cite this article in press as: Abou-Dobara, M.I. et al., Correlation b
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crease the chance of detecting their antimicrobial activities.
The used organisms in the present investigations included
two Gram positive bacteria (B. cereus and S. aureus) and

two Gram negative bacteria (E. coli and K. pneumoniae) in
addition to four species of fungi (i.e. A. niger, P. italicum,
Alternaria alternata and F. oxysporium). The results of the

antibacterial activities of the synthesized compounds are re-
corded in Table 2. All the used HLn and some of their metal
complexes were found to have antibacterial activity against
Gram negative bacteria namely; E. coli (inhibition zone of

HL1 = 5 and 4 mm at concentration = 50 and 100 lg/ml)
and inhibition zone of HL4 = 2 mm and CuL4 = 3 mm and
NiCl2 = 3 mm at concentration = 100 lg/ml). In addition to

that K. pneumoniae was also affected by HLn and their metal
complexes i.e. (inhibition zone of HL1 = 3 mm and
CuL1 = 4 mm at concentration = 50 lg/ml) and (inhibition

zone of HL3 = 2 mm and CuL3 = 4 mm at concentra-
tion = 50 lg/ml. CuL2, CuL3 and CuL5 were found to have
high antibacterial activity than HL2, HL3 and HL5 against

K. pneumoniae, this means CuLn complexes are more active
etween the structure and biological activity studies of supramolecular
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than HLn as shown in Figs. 4 and 5. Whereas the HLn and
their derivatives also have effect against Gram positive bacte-
ria; namely B. cereus (inhibition zone of HL3 = 2 mm and

HL4 = 4 mm at concentration = 50 lg/ml) and inhibition
zone of CuL3, CuL4 and CuL5 = 2, 2.5 and 3 mm, respectively
at concentration = 50 lg/ml). But very low effects were re-

corded against S. aureus. HL4, HL5 and HL1 are more active
than penicillin against B. cereus, E. coli and K. pneumoniae
as shown in Fig. 6.

Zhandarev et al. (2006) found that dichlorotetrahydroqui-
nolinol and dichloromethyloxyquinolinol caused the maxi-
mum antibacterial effect with respect to Gram negative
bacterial species (i.e. E. coli). The same previous authors re-

corded that some quinolinols and their tetrahydro derivatives
caused pronounced growth inhibition of S. aureus. The results
(Table 2) reveal that the ligand is moderately toxic against bac-

teria, while all the chelates are more toxic than ligand. Among
all the chelates the Cu2+ chelates are toxic against bacteria,
also Cu2+ complexes are more active than Ni2+ complexes

against B. cereus, E. coli and K. pneumoniae. The relation be-
tween the values of inhibition zone and ionic radius for com-
plexes is shown in Figs. 7 and 8 and it is clear that the

values of inhibition zone increase with increasing ionic radius.
Our results of the antifungal activities of the synthesized com-
pounds are recorded in Table 3. The results of the examination
of antifungal activity of HLn ligands (Table 3) revealed that the

ligands have low toxicity than their complexes against fungi as
shown in Fig. 9. Patel (2009) found that 5-(4-N,N-Diet-
hylaminosulfonly phenylazo)-8-hydroxy quinolines and their

metal chelates have moderate and high toxicity against some
fungi including A. niger and Penicillium expansum. The same
previous author found that Cu2+ chelates are more toxic

against the tested fungi than other chelates.
As shown in Tables 2 and 3, the values of inhibition zone

for ligands (HLn) are related to the nature of the p-substituent

as they increase according to the following order p-
(NO2 > Cl > H > CH3 > OCH3) (El-Sonbati et al., 2011,
2012a; El-Ghamaz et al., 2011, 2012; Abou-Dobara et al.,
2013). This can be attributed to the fact that the effective

charge experienced by the d-electrons increased due to the elec-
tron withdrawing p-substituent (HL4 and HL5) while it de-
creased by the electron donating character of HL1 and HL2.

This is in accordance with that expected from Hammett’s con-
stant rR as shown in Figs. 10 and 11 correlates the values of
inhibition zone (mm) with rR, it is clear that these values in-

crease with increasing rR. It is important to note that the exis-
tence of a methyl and/or methoxy group enhances the electron
density on the coordination sites and simultaneously decreases
the values of inhibition zone.

4. Conclusion

The results arising from the present investigations confirm that

the hydroxyquinoline exists, in solution, in a monomer dimer
equilibrium. The results suggest that in the monomeric form
a strong intramolecular hydrogen bond is present. Two mono-

mers lead to the dimer by formation of an additional hydrogen
bond yielding the bifurcated hydrogen bonds and H–N–H
nitrogen bridges (Fig. 2A). The dimer is able to dissociate,

while the intramolecular interaction can be broken if appropri-
ate hydrogen bond acceptors are attached which act as com-
Please cite this article in press as: Abou-Dobara, M.I. et al., Correlation b
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petitors to the quinoline nitrogen atoms as was observed
(Fig. 2B0). In conclusion, the results of the present study indi-
cate that the selected (4-alkylphenylazo)-5-sulfo-8-hydroxy-

quinoline (HLn) ligands are suitable for building a
supramolecular structure. Moreover, the azo and/or hydrazo
compounds experience photochemical isomerization and are,

therefore, of interest for applicative purposes. The antimicro-
bial activity was tested against B. cereus, S. aureus, E. coli,
K. pneumoniae, A. niger, Alternaria alternata, P. italicum and

F. oxysporium and the results proved that HL3, CuCl3, HL5

and CuCl5 have antibacterial activity against E. coli, K. pneu-
moniae and B. cereus.
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