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Abstract

Some aspects concerning the subfringe integration method in interferogram analysis have been investigated and modi5ed. The modi5ed
algorithm, introduced in this paper, is capable of reconstructing the phase in the presence of noise or errors in carrier frequency. The
subfringe integration method was applied to analyze two computer simulated patterns of equispaced Fizeau fringes using N bucket
integration. Also, it is used to analyze the multiple-beam Fizeau fringe. The refractive index pro5le of polyethylene 5ber is obtained by
using two methods, subfringe integration method, and Fourier transform method. A comparison between the obtained results using the
maintained methods is presented.
? 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Because of the determination of the phase di;erence
in interferometry is directed to the physical quantity to
be measured, the last three decades have seen an up-
surge of interest in optical interferometric measurement.
Phase measurement interferometry is the most widely
used technique to directly measure wavefront phase in
an interferometer corresponding to the relative di;erence
between the test and reference optical paths. The direct
measurement of phase information has many advantages
over simply recording interferogram and digitizing the
position of the fringe maxima and minima. The main
advantages of optical interferometric measurement are
the two-dimensional phase that can be measured with
high precision and automated by fast measurement using
computer-aid.
The phase-shifting method is an e;ective technique for

fringe analysis to obtain the phase distribution. In this case
the phase di;erence between the two interfering beams
mutate in a known manner [1]. We acquire the phase
value by calculating the intensity change of an investi-
gated point corresponding to at least three di;erent phase
shifts.
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There are many di;erent methods to introduce phase
shift or modulation in an interferometer [2,3], for example
moving a mirror, tilting a glass plate, moving a grating
and rotating a half-wave plate or analyzer. A simple and
a common straightforward way to introduce phase shifting
technique is to mount one of the mirrors of the interfero-
meter on a piezoelectric transducer (PZT) and apply a suit-
able voltage to the PZT. Many brands of PZT are available
to linearly move a mirror over many micrometers. Accurate
calibration of the PZT is then very important to obtain the
desired phase shifts between data frames.
The fringe pattern analysis techniques provide a pow-

erful tool in optical interferometric measurement for ac-
curate determination of phase. Numerous authors used
interferometric pattern to determine the phase of an un-
known wavefront. Each has proposed a phase extraction
algorithm appropriate for his particular data-acquisition
scheme [4].
There are many di;erent techniques for quantitative

phase measurement from fringe patterns. These techniques
can be classi5ed into two categories: temporal [5] and
spatial [6] techniques. Temporal technique takes the phase
data sequentially while spatial technique takes the phase
data simultaneously. Each of the techniques has its own
fundamental advantages and disadvantages in accuracy,
range of measurement, and type of object that can be
measured.
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The oldest and the simplest method used for the fringe
pattern analysis supported by image processing is the fringe
tracing method. With this technique it is possible to eval-
uate the phase modulation with one image only and in a
wide range of values [7]. The main advantage of this tech-
nique is that there is no phase unwrapping, but this tech-
nique has the disadvantage of having a high sensitivity
to noise, compared with other techniques such as Fourier
transform.
Fourier transform technique of fringe pattern analysis is

useful in removing the noise from the fringe pattern. Fourier
fringe analysis was originally introduced and demonstrated
by Takeda et al. [8,9]. The technique has also been stud-
ied by many others [10–14]. The major advantage of this
technique is that it usually requires only one interference
fringe pattern for extracting phase information; moreover,
the higher harmonics can be removed in computation. The
main disadvantage of this technique is the processing of
transform, 5ltering and inverse transform take a long time;
furthermore, the automatic selection of 5ltering windows in
spectrum domain is very diJcult especially if there is over-
lap between the peaks [15].
From the point of view of accuracy, the best technique

used for evaluating the phase distribution is the subfringe
integration algorithm. This technique has the advantage
of having a high resistance to noise and to error due to
errors in carrier frequency. Furthermore, it does not need
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Fig. 1. Integration analysis method process: (A) original pattern; (B) 1-D intensity distribution; (C) dividing the fringe period into four buckets; (D)
integration of each bucket process; (E) calculating the phase; (F) wrapped phase obtained; (G) unwrapped process; (H) unwrapped phase obtained.

phase shifting devices because it uses only one fringe
pattern.
In this paper we will investigate and modify the sub-

fringe integration method in order to reduce the e;ect
of noise and the error due to errors in carrier frequency.
Moreover, we used it to analyze the multiple-beam Fizeau
fringes.

2. Explanation of the subfringe technique for a fringe
analysis

Let us 5rst describe the basic principle of the subfringe
technique. The intensity distribution of linear and equis-
paced Fizeau fringes can be written as

I(x) = a(x)
[
1 + b(x) cos

(
2�x
T

+ �(x)
)]
; (1)

where a(x) represents the background illumination of the
intensity distribution I(x), b(x) describes the amplitude of
the corresponding interference fringe, T is the fringe period,
�(x) is the phase of the object that we have to analyze at
any point (x) on the interferogram.
The main idea of integration method is that the period of

the sinusoidal signal is divided into at least three or more
buckets and integrates each bucket. The whole integration
analysis method process is illustrated in Fig. 1. Wyant
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used four integrating buckets in the temporal domain [16].
Recently, Wang et al. used four integrating buckets in the
spatial domain [17]. Wang et al. described the four-intensity
integration bucket over a 5nite space as

I =
∫ T=8

−T=8
I(x) dx +

∫ 3T=8

T=8
I(x) dx

+
∫ 5T=8

3T=8
I(x) dx +

∫ 7T=8

5T=8
I(x) dx

= I1 + I2 + I3 + I4 (2)

in this case, the phase is given by

’= tan−1
(
I4 − I2
I1 − I3

)
: (3)

According to the limits of integration we need to shift the
origin of the signal by T=8. But for more accuracy, we
changed this limits of integration to be (0; T=4), (T=4; T=2),
(T=2; 3T=4), (3T=4; T ). In this case we do not need to shift
the origin of the signal. Eq. (2) becomes

I =
∫ T=4

0
I(x) dx +

∫ T=2

T=4
I(x) dx +

∫ 3T=4

T=2
I(x) dx

+
∫ T

3T=4
I(x) dx = I1 + I2 + I3 + I4; (4)

where

I1 = A+ B[cos�− sin�];

I2 = A+ B[− cos�− sin�];

I3 = A+ B[− cos�+ sin�]; (5)

I4 = A+ B[cos�+ sin�];

and

A=
T
4
a(x); B=

T
2�
b(x):

The phase is retrieved by applying the equation

�= tan−1
(
(I1 + I2)− (I3 + I4)

2(I2 − I1)
)

(6)

by the same way the phase, in case 5ve, six, seven, eight
buckets, can rewritten as the following equation, respec-
tively:

�5 buckets = tan−1
(
(I3 + I4)− (I1 + I2)
(I5 − I2) + (I1 − I2)

)
;

�6 buckets = tan−1
(
(I3 + I4)− (I1 + I2)
(I5 − I6) + (I1 − I2)

)
;

�7 buckets = tan−1
(
(I3 + I4)− (I1 + I2) + (I7 − I6)

(I5 − I6) + 2(I1 − I2)
)
;

(a) 

(b)

Fig. 2. Two computer-simulated interferogram of equispaced Fizeau
fringes.

�8 buckets

=tan−1
(
((I3+ I4)−(I1+ I2))+((I8+ I7)−(I5+ I6))

2(I5−I6)+2(I1−I2)
)
:

(7)

In most phase-measurement techniques, the phase un-
wrapping is an inevitable consequence because of the nature
of the function used to calculate the phase values lie between
±� radians or between 0 and 2�. In other words the arctan
function provides only principle values of the phase. These
principle values are called wrapped phase values because
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Fig. 3. Two-dimensional (2D) unwrapped continuous phase distribution
(a) using interferogram 2a, (b) using interferogram 2b.

the absolute phase is wrapped into interval (−�, �] [7].
So phase ambiguities must then be removed using a phase
unwrapping techniques. In addition, the carrier frequency
tilt fringes will result in a large tilt of the measured phase.
The tilt due to the carrier fringes then need to be sub-
tracted in order to obtain the original phase. There are
many techniques for unwrapping phase. In this work we
used two simplest techniques. The 5rst one is the al-
gorithm, which was used by Takeda [8] and the other
named Itoh technique [18]. In fact we observed that the
two techniques give essentially the same 5nal unwrapped
phase.

3. Results of computer simulation

3.1. Noise-free interferogram

The subfringe method was tested by using two di;er-
ent computer-simulated of equispaced Fizeau fringes, in
case of using a matching and mismatching immersion
liquids, shown in Figs. 2a and b, respectively. The ob-
tained phase after processing the interferogram (Fig. 2)
using subfringe method is shown in Figs. 3a and b. Fig. 4
shows a comparison of the reconstructed phase using Eqs.
(3) and (6). From Fig. 4 it is clear that the reconstructed
phase using Eq. (6) is more accurate than the reconstructed
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Fig. 4. The original and the reconstructed unwrapped phase calculated
using Eqs. (3) and (6): (a) using interferogram 2a, (b) using interferogram
2b.

phase in case of using Eq. (3). For example in Fig. 4a,
the average deviation of the reconstructed phase from the
original phase is 1:56134 × 10−4 which calculated using
Eq. (6) corresponding to 1:48404 × 10−3 in case of using
Eq. (3).

3.2. Noise interferogram

There is no doubt that one of the biggest problems in-
volved in practical digital fringe pattern analysis is the noise
reduction problem, regardless of the type of image process-
ing method used. Without noise the fringe pattern analysis
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becomes much easier to be analyzed and is usually straight-
forward. But unfortunately, during the acquisition and dig-
itization of the fringe pattern various noises appear in the
digital fringe patterns [19]. Introducing noise function due
to detector error, Eq. (1) can be rewritten as

I(x) = a(x)
[
1 + b(x) cos

(
2�x
T

+ ’(x)
)
+ n(x)

]
; (8)
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Fig. 5. An example of intensity of 1D fringe pattern with di;erent parameter of noise �.
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Fig. 6. The average deviation of the reconstructed phase from the original phase versus the parameter of noise, with di;erent bucket number.

where n(x) is the noise distribution function, which inMu-
ences both the bias and the visibility of the fringe pattern,
and given by

n(x) = � random(x);

where � is the parameter of noise and random(x) is random
number between the interval (0, 1). We created this ran-
dom number by using MATALB function rand(x) which
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Fig. 7. Four buckets integrating in subfringe integrating method: (a) bandwidth integrate, (b) overlap integrate.

produce uniformly distributed random numbers and arrays.
Fig. 5 shows the intensity distribution with di;erent noise
parameter (�). There is no doubt that the larger noise para-
meter the larger average deviation of the reconstructed phase
from the original phase. To reduce the average deviation of
the reconstructed phase from the original phase we used the
subfringe integration method with four, 5ve, six, seven, and
eight buckets. Curve 1 in Fig. 6 shows the average deviation
of the reconstructed phase from the original phase using four
buckets while curve 2, 3, 4, and 5 have been obtained by
using 5ve, six, seven and eight buckets respectively. From
the average deviation curves shown in Fig. 6 it is clear that
the more buckets the smaller average deviation.

4. Reduce the e�ects of major fundamentals errors

In practice, the accuracy in the phase measurement cal-
culation is a;ected by a variety of events, such as wrong
carrier frequency, noise, unequally spaced fringes, detec-
tor non-linearities, and variations in the dc fringe inten-
sity. Creath and Schmit discussed in detail N-point spatial
phase-measurement technique error [20]. So in the follow-
ing analysis we will neglect to discuss all the error e;ects
but we will discuss only how to reduce the e;ect of noise
and wrong carrier frequency with the integration method.
Phase measurements of higher precision can be done with
variation of the limits of integration of the buckets by two
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methods. The 5rst method is not to integrate the entire
bucket but integrate bandwidth in the bucket (bandwidth in-
tegrate). For example, the limit of 5rst bucket changes from
(0; T=4) to (0 +NT; T=4−NT ) as shown in Fig. 7a. In the
second method, the limits of integration change provided
that there is an overlap between the buckets with each other
(integrate with overlap). In other words, the limits of inte-
grate 5rst bucket become from (0; T=4) to (0−NT; T=4+NT )
as shown in Fig. 7b. Fig. 8 presents a comparison of the
average deviation of the reconstructed phase from the orig-
inal phase as a function of the parameter of noise with
the proposed methods. Fig. 8a has been obtained by us-
ing Four buckets while Fig. 8b has been obtained using
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Fig. 9. The average deviation of the reconstructed phase from the orig-
inal phase versus the carrier frequency error, with di;erent bucket area
integrate, using six buckets.

Table 1
Statistical comparisons between the average deviation of the reconstructed
phase from the original phase in case integrate the entire of the buckets
and integrate only bandwidth of the buckets, when using seven buckets

Carrier frequency Average deviation

error (%) Integrate the Integrate only
entire of the bandwidth of the
buckets buckets

2 8:97× 10−4 8:97× 10−4

4 6:44× 10−4 1:3× 10−3

6 4:5× 10−3 1:3× 10−3

8 5:3× 10−3 3:4× 10−3

10 9:1× 10−3 6:3× 10−3

15 12× 10−3 11:9× 10−3

20 35:3× 10−3 18:9× 10−3

5ve buckets. It is seen that using the proposed methods
we can avoid the divergence of the reconstructed phase
from the original phase in the presence of noise. We
are essentially able to reduce the e;ect of wrong car-
rier frequency using the bandwidth integrate method as
shown in Fig. 9. Table 1 gives the average deviation of
the reconstructed phase from the original phase obtained
from seven buckets when using the bandwidth integrate
method.

5. Experimental results

The refractive index pro5le, shape and value plays
an important role in characterizing the natural, synthetic
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and optical 5ber because of several major advances in
its related technologies. The refractive index pro5le mea-
surement using multiple-beam Fizeau interference of the
Fizeau technique gives accurate results due to the sharp-
ness of the interference fringe compared with two-beam
interference [21]. Therefore, many authors used the
multiple-beam Fizeau interference technique to measure
the refractive index pro5le to textile and optical 5bers
[22–25].
In the multiple-beam Fizeau interference technique the

5ber samples are immersed in a silvered liquid wedge in-
terferometer. In this case the 5ber acts as phase objects dis-
placing the normally straight parallel fringes to the 5ber
region. This fringe displacement is proportional to the re-
fractive index of the 5ber. Considering the refraction of the
beam through the 5ber due to the refractive index change
along its radius and the cross section of the 5ber divided
into large number of layers, Q, each of them is considered
to have a constant refractive index; the equation used to
calculate the refractive index pro5le of the 5ber is given
by [26]

��Q
4�

=




Q−1∑
j=1

2nj




√
(R− (j − 1)a)2 − (dQno=nj)2

−
√
(R− ja)2 − (dQno=nj)2




+2nQ
√
(R− (Q − 1)a)2 − (dQno=nj)2

− no{
√
R2 − d2Q +

√
R2 − X 2

Q}



;

(9)

where � is the wavelength of light used, R is the 5bre radius,
a is the layer thickness (a = R=Q), no = nL is the immer-
sion liquid refractive index, XQ and dQ are the emerged and
incident rays distances from the 5ber center, respectively,
where

dQ =
nQ(R− (Q − 1

2 )a)
no

: (10)

And considering the phase di;erence is given by

�= �(R)− �o;

where �(R) is the phase shift due to the 5ber and �o is the
phase due to the immersion liquid.
Fig. 10 shows the interferogram of multiple-beam trans-

mitted Fizeau fringes when using monochromatic light of
wavelength 546:1 nm vibrating parallel to the polyethylene
5ber axis and the refractive index of the immersion liquid
is 1.5787. We analyzed Fig. 10 using two techniques, sub-
fringe integration method and Fourier transform method,
to obtain the phase distribution and the refractive index
pro5le of the 5ber. The refractive index pro5le obtained
using both maintained methods is shown in Fig. 11. It
is clear that the di;erence between the refractive index

Fig. 10. Microinterferogram of polyethylene 5ber using monochromatic
light of wavelength 546:1 nm vibrating parallel to the 5ber axis, immer-
sion liquid used is 1.5787.

measurement that obtained by the subfringe integra-
tion and Fourier transform methods is small and the
two curves coincide with each other and tend to be one
curve.

6. Conclusions

The subfringe integration method, like Fourier trans-
form method, has a major advantage, such as it requires
one only interference fringe pattern and it has a high re-
sistance to noise and to error due to the errors in carrier
frequency. Furthermore, it does not need processing of trans-
form, 5ltering, and inverse transformwhich take long time in
calculation.
The subfringe integration algorithm introduced in this

paper is easy to implement, e;ective in the determi-
nation of phase distribution, and have achieved better
accuracy in the presence of noise. This technique was
tested by using two di;erent computer simulated of eq-
uispaced Fizeau fringe. It has shown high-precision eval-
uation of the phase distribution of multiple-beam Fizeau
fringe.
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Fig. 11. Refractive index pro5le of polyethylene 5ber using subfringe integration method and Fourier transform method, monochromatic light vibrating
parallel to the 5ber axis is used and the immersion liquid used is 1.5787.

From the computer simulation and experimental result, we
can conclude that the subfringe integration method is a pow-
erful technique to analyze the multiple-beam Fizeau fringe
pattern to measure the refractive index pro5le of polyethy-
lene 5ber.
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