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The propagation of three-dimensional nonlinear dust acoustic waves in a dusty plasma consisting

of positive and negative dust grains as well as Boltzmann distributed electrons and ions is investi-

gated. Using a reductive perturbation method, Cylindrical Kadomtsev-Petviashvili and Spherical

Kadomtsev-Petviashvili equations, appropriate for describing the evolution of the system, are

derived. The Generalized Expansion method is used to find the various solutions of the obtained

nonlinear Kadomtsev-Petviashvili equations. New classes of triangular, hyperbolic solitary, ratio-

nal, and Jacobi elliptical type solutions are obtained and graphically presented. It is found that the

proposed dusty plasma model can support solitary waves with compressive and rarefactive poten-

tial pulses. Moreover, the effects of plasma parameters on this solitary wave structure are investi-

gated. The current findings are applied to a cosmic-type plasma in different regions of space, viz.

cometary tails, mesosphere, and Jupiter’s magnetosphere as well as laboratory-type plasma such as

low temperature experiments, where a dusty plasma with opposite polarity is dominant. Published
by AIP Publishing. https://doi.org/10.1063/1.5026616

I. INTRODUCTION

The dusty plasma (DP) usually consists of micro-sized

dust grains with positive and negative charges as well as neu-

tral particles beside electrons and ions. This type of plasma

was first predicted by the theoretical model of Rao et al.1

Since then, the DP has received a great deal of interest

because of its vital role in explaining many astrophysical and

space phenomena.2–18 It should be mentioned also that the DP

has a significant impact in the laboratory experiments.19–23

The DP is encountered in different regions of space envi-

ronments, such as lower and upper mesospheres, planetary

rings, cometary tails, and comae, interplanetary spaces, Martian

atmosphere, and at the Moon surface.6,9,13,15–17 In laboratory,

the DP occurs in low temperature plasmas during plasma proc-

essing (e.g., in microelectronics) and is also artificially created

in plasma discharges, plasma coating, radio-frequency dis-

charges, tokamaks, etc.10,24 Due to these interesting applica-

tions of dusty plasmas in several areas of science and

technology, the research on dusty plasmas has increased day by

day.2–20

The charging processes of the dusty plasma are divided

into negative charging by plasma electrons and ion currents

as well as positive charging by secondary electron emission,

UV radiations, inhomogeneous thermionic emission,

etc.7,10,25 However, negative charging is the dominant pro-

cess due to the high mobility of electrons. Many investiga-

tions have shown the presence of both positively and

negatively charged dust in various regions of space and

astrophysical environments.10,13

The propagation of dust acoustic waves (DAWs) in

plasma is governed by two types of nonlinear partial differ-

ential equations (NLPDEqs). These equations are: (i)
NLPDEqs with constant coefficients: for which many direct

methods have been used to solve them such as the inverse

scattering method,26 sine-cosine method,27 tanh function

method,28,29 Jacobi elliptic function expansion method,30–32

etc…. (ii) NLPDEqs with variable coefficients: for which the

solution methods are limited and most of the aforementioned

ones are restricted to the constant coefficient models. We

can mention here that the generalized G0=G-expansion

method is one of the most interesting methods to solve the

NLPDEqs with variable coefficients. Zhang et al.33 applied

the G0=G-expansion method to solve the modified Korteweg-

de Vries (mKdV) equation with variable coefficients and

they have obtained hyperbolic, trigonometric, and rational

solutions. The G0=G-expansion method is used by the

authors to solve the nonlinear Cylindrical Kadomtsev-

Petviashvili (CKP) equation with variable coefficients, for a

system of dusty plasma with Maxwellian distributed ions

and electrons.34 New classes of hyperbolic, geometrical, and

rational solutions are obtained.

The nonlinear propagation of DAWs in a strongly cou-

pled inhomogeneous dusty plasma is studied by Alinejad and

Mamun35 for a plasma system consisting of strongly corre-

lated negative charged dust grains and weakly correlated elec-

trons and ions. The evolution equation for this system is a

variable coefficient KdV equation with additional terms due

to the density gradient. The solution of this equation is found

by appropriate transformations. El-Taibany et al.36 and El-

Labany et al.,37 studied the modified Zakharov-Kuznetsov

(ZK) equations for an inhomogeneous dusty plasma system

with constant and fluctuating dust charge. These equations are

nonlinear equations with variable coefficients and describe the

nonlinear propagation of DAWs in such plasma systems.

They used special transformations to reduce the variable coef-

ficient modified ZK equation to a constant coefficient one.

Then, this equation is solved by the traditional methods.

The aim of this work is finding the analytical solutions

of two interesting classes of variable coefficients NPDEqs
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that govern the evolution of many multi-component plasma

systems: the CKP and Spherical Kadomtsev-Petviashvili

(SKP) equations.18,38–41 These equations describe the basic

properties of the acoustic waves propagation in three dimen-

sional nonplanar geometry plasma systems. To solve the two

considered KP equations (CKP and SKP), we used the

Generalized Expansion (GE)–method, developed by Sabry

et al.42 The obtained solutions include solitary wave solu-

tions besides Jacobi and Weierstrass doubly periodic wave

solutions.

In this paper, we used the GE-method, explained in the

Appendix, to solve the CKP and SKP equations for a four com-

ponent dusty plasma system consisting of positive dust, nega-

tive dust, Boltzmann distributed electrons, and ions. In Sec. II,

the basic equations of the plasma system are given and reduced

to the CKP and SKP equations by the reductive perturbation

method (RPM).43 In Sec. III, the GE-method is applied to

obtain the various solutions of these equations. Section IV is

devoted to the investigation of the basic characteristics of the

obtained solutions for laboratory-type and cosmic-type DPs.

Finally, the discussion and conclusions are presented.

II. NONPLANAR KP EQUATIONS

In this work, we consider an unmagnetized, collision-

less, four-component dusty plasma system. A collisionless

plasma system means that the mean free path between colli-

sions of plasma particles (electrons, ions,…) must be much

larger than the typical macroscopic length scale over which

the plasma quantities vary. Hence, the collision frequencies

are much smaller than the typical plasma frequency. This

type of plasma is found in space, where plasmas often have

very low densities.24,44 In addition, we consider a plasma

system consisting of positive and negative dust grains as flu-

ids and a background of ions and electrons. The dust grains

are strongly correlated with each other due to their lower

temperature and higher electric charge, whereas both the

electrons and ions are weakly correlated due to their higher

temperatures and lower electric charges.45–47 Furthermore,

the phase velocity of the DAW is much smaller than the

electron and ion thermal speeds. Accordingly, the electrons

and ions establish equilibrium in the DAW potential. Here,

the pressure gradient is balanced by the electric force, lead-

ing to Boltzmann distributed electrons and ions.48,49 Hence,

the four constituents of our system are positive and negative

dust grains in addition to Boltzmann distributed electrons

and ions. The dynamics of this system are governed by the

following continuity, momentum and Poisson equations

@n6

@t
þr: n6u6ð Þ ¼ 0; (1)

@

@t
þ uþ:r

� �
uþ ¼ �abr/; (2)

@

@t
þ u�:r

� �
u� ¼ r/; (3)

r2/ ¼ ne � ni � nþ þ an: (4)

Furthermore, the electron and ion distributions are given by

ne ¼ le exp r/ð Þ; ni ¼ li exp �/ð Þ: (5)

In Eqs. (1)–(5), n6 and u6 are the positive/negative dust

fluid densities and velocities, respectively, and / is the elec-

trostatic potential. r¼Ti/Te, where Te and Ti are the electron

and ion temperature, respectively. le ¼ ne0

z�n�0
and li ¼ ni0

z�n�0
,

where ni0 and ne0 are the unperturbed ion and electron densi-

ties. b ¼ m�=mþ and a ¼ Zþ=Z� are the dust mass and dust

charge ratios, where mþ;m�; Zþ, and Z–, are the positive

and negative dust masses and charge numbers, respectively.

The densities n6, ni, and ne are normalized by the unper-

turbed negative dust density, n�0�. The velocity vector, u6,

is normalized by Cs ¼ ðZ�kBTi=m�Þ1=2
, while the electro-

static potential / is normalized by kBTi/e. The space and

time variables are scaled by the negative dust Debye radius,

kD� ¼ ðZ�kBTi=4pZ2
�e2n�0Þ1=2

and the negative dust plasma

period, xp� ¼ ð4pZ2
�e2n�0=m�Þ1=2

, respectively. Although

the distributions of electrons and ions are taken as

Boltzmann, the argument of this work can be generalized to

various systems, having non-Maxwellian distributions. The

neutrality property of this plasma system implies

li � le þ aQ ¼ 1; (6)

where Q ¼ nþ0

n�0
.

To investigate the nonlinear propagation of the electro-

static DAWs in the considered plasma system, the RPM is

employed. This method is used to convert the coupled non-

linear Eqs. (1)–(5) into a single nonlinear evolution equation

for the electrostatic potential, /. According to the RPM, the

independent variables in Eqs. (1)–(5) can be stretched in a

new frame as

R ¼ �1=2ðr � ktÞ ; H ¼ ��1=2h ;

Z ¼ �z; u ¼ u and T ¼ �3=2t;
(7)

where � < 1, is a small positive parameter and k is the frame

speed. R, H, u, and Z are the radial, angular, azimuthal, and

axial coordinates. Furthermore, the dependent variables can

be expanded as

n6 ¼ qþ �nð1Þ6� þ �2n
ð2Þ
6� þ � � � ;

u6 ¼ �uð1Þ6� þ �2u
ð2Þ
6� þ � � � ;

v6 ¼ �3=2vð1Þ6 þ �5=2vð2Þ6 þ � � � ;
w6 ¼ �3=2w

ð1Þ
6 þ �5=2w

ð2Þ
6 þ � � � ;

/ ¼ �/ð1Þ þ �2/ð2Þ þ � � � ; (8)

where q¼Q for positive dust density and q ¼ 1 for negative

dust density. u6 and v6 are the positive/negative velocities

in r, h directions, while w6 is the positive/negative velocity

in the z direction for cylindrical and u direction for spherical

coordinates, respectively. Substituting the stretched varia-

bles, Eq. (7) and the expansions, Eqs. (8) into Eqs. (1)–(5),

we can isolate distinct orders in �. The first and the second

order equations in � lead to the KP equations. In the cylindri-

cal coordinates, the CKP equation for /(R, H, Z, T) is

derived as
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@

@R

@/
@T
þ /

2T
þA/

@/
@R
þB

@3/
@R3

� �
þ 1

2kT2

@2/

@H2
þk

2

@2/
@Z2
¼0:

(9)

Similarly, in the spherical coordinates SKP for /(R, H, u, T)

is derived as

@

@R

@/
@T
þ /

T
þ A/

@

@R
/þ B

@3/
@R3

� �

þ 1

2k2T2

@/2ð1Þ

@H2
þ 1

H
@/
@H
þ 1

H2

@2/
@u2

 !
¼ 0: (10)

The frame speed, k, and the coefficients, A and B, are given by

k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2bQþ 1

li þ le r

s
; (11)

A ¼ B
3Qa3b2

k4
� 3

k4
� le r2 þ li

� �
; (12)

and

B ¼ k3

2 1þ a2bQ½ �

" #
: (13)

For the derivation details of CKP and SKP equations (9) and

(10), the reader refers to Refs. 18 and 40, given by one of the

authors.

III. SOLUTIONS OF CKP AND SKP EQUATIONS

To get the analytical solutions of the CKP and SKP Eqs.

(9) and (10), we apply the GE-method, presented in the

Appendix. According to this method, we can express the

solution of these equations as a polynomial given by Eq.

(A2). Balancing the highest derivative term with the non-

linear term in both Eqs. (9) and (10) leads to m¼ 2. Hence,

Eq. (A2) is reduced to

/ fð Þ ¼ A0 H; Tð Þ þ A1 H; Tð Þx fð Þ þ A2 H; Tð Þx fð Þ2; (14)

where x(f) is given by Eq. (A4) and f ¼ aðTÞRþ bðTÞZ
þdðH; TÞT. Substituting Eq. (14) along with Eq. (A4) into

Eqs. (9) and (10), then setting the coefficients of xi and

xi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP4

j¼0 cj xj
q

(where i¼ 0 – 6) to zero, we get a system of

over-determined partial differential equations with respect to

the unknown functions A0ðH; T Þ; A1ðH; T Þ; A2ðH; T Þ;
aðTÞ; bðTÞ; dðHÞ. Solving the obtained system for

c1¼ c3¼ 0, we get

a Tð Þ ¼ a0; b Tð Þ ¼ b0; A1 H; Tð Þ ¼ 0;

A2 H; Tð Þ ¼ � 12 B c4 k2a2
0

A
: (15)

The coefficients, A0(H, T) and d(H, T), for the CKP equation

are derived as

A0 H; Tð Þ ¼ � c2 þ k ð2u0 a0 þ 8B c2 k2a4
0 þ k b2

0Þ
2A a2

0 k
; (16)

d H; Tð Þ ¼ u0 �
1

2
k a0 H2 þ c H; (17)

whereas for the SKP equation, we get

A0 H;Tð Þ¼� 1

2Aa2
0 k2H2T2

� b2
0þc2T2�2u0a0k

2H2T2�2ca0k
2H2T2

þ8Bc2a4
0k

2H2T2þ2ca0k
2H2T2 logðHÞ

 !
;

(18)

d H; Tð Þ ¼ �u0 �
1

2
a0k

2H2 þ c log ðHÞ; (19)

where, a0, b0, c, and u0 are arbitrary constants.

Substituting the values of x(f), from Eqs. (A5) to

(A12), in Eq. (14) gives the solutions for CKP and SKP

equations. These solutions (differ in the values of A0(H, T)

and d(H, T)) are summarized as follows:

/1 ¼ A0 H; Tð Þ � c2

c4

A2 H; Tð Þsech2 ffiffiffiffiffi
c2

p
f

� �
;

c0 ¼ 0 c2 > 0; c4 < 0; (20)

/2 ¼ A0 H; Tð Þ � c2

2c4

A2 H; Tð Þtanh2

ffiffiffiffiffiffiffiffi
�c2

2

r
f

" #
;

c0 ¼
c2

2

4c4

c2 < 0; c4 > 0; (21)

/3 ¼ A0 H; Tð Þ � c2

c4

A2 H; Tð Þ sec2 ffiffiffiffiffiffiffiffi�c2

p
f

� �
;

c0 ¼ 0 c2 < 0; c4 > 0; (22)

/4 ¼ A0 H; Tð Þ þ c2

c4

A2 H; Tð Þ tan2 ffiffiffiffiffi
c2

p
f

� �
;

c0 ¼ 0 c2 < 0; c4 > 0; (23)

/5¼A0 H;Tð ÞþA2 H;Tð Þffiffiffiffiffi
c4
p

f2
; c0¼ c2¼0; c4�0; (24)

/6 ¼ A0 H; Tð Þ �
c2 m2A2 H; Tð Þcn2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

2m2 � 1

r
f

" #

c4ð2m2 � 1Þ ;

c2 > 0; c4 > 0; c0 ¼ �
c2

2m2 1� m2ð Þ

c4 2m2 � 1ð Þ2
; (25)

/7 ¼ A0 H; Tð Þ �
c2 m2A2 H; Tð Þsn2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�c2

1þ m2

r
f

" #

c4ð1þ m2Þ ;

c2 > 0; c4 < 0; c0 ¼ �
c2

2 1� m2ð Þ

c4 2� m2ð Þ2
; (26)

/8 ¼ A0 H; Tð Þ �
c2 A2 H; Tð Þdn2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

2� m2

r
f

" #

c4ðm2 � 2Þ ;

c2 < 0; c4 > 0; c0 ¼ �
c2

2m2

c4 m2 þ 1ð Þ2
; (27)
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where m is the modulus of the three Jacobi elliptic functions

cn, dn, and sn. For m ! 0, the Jacobi elliptic functions

degenerate into their corresponding triangular functions, i.e.,

snðxÞ ! sin ðxÞ and cnðxÞ ! cos ðxÞ: For m! 1, the Jacobi

elliptic functions degenerate into the hyperbolic functions,

i.e., snðxÞ ! tanhðxÞ; cnðxÞ ! sechðxÞ. Therefore, solution

/6 degenerates into the solitary wave solution /1 and /7

degenerates to the solitary wave solution

/9 ¼ A0 H; Tð Þ �
c2A2 H; Tð Þtanh2

ffiffiffiffiffiffiffiffiffi
� c2

2

r
f

" #

2c4

: (28)

Since a0, b0, c2, and c4 are arbitrary constants, we can take

c2 ¼ k b2
0�2u0 a0

4B a4
0

. We may also set c¼ 0, since the transverse

perturbation should be weak from the physical view point.

Hence, the solitary solution, (28), after substitution of

A2ðH; T Þ; A0ðH; T Þ and d(H, T) from Eqs. (15)–(17) for the

CKP equation, is reduced to the equation

/ ¼ /0 sech2

a0Rþ b0Z þ u0 �
1

2
a0kH

2

� �
T

W

2
4

3
5
; (29)

where the amplitude, /0, and the width, W, of the ion-

acoustic solitary wave are given by

/0 ¼ �
3 2u0 a0 � b2

0 k
	 


2A a2
0

; (30)

W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8B a4
0

b2
0 k2 � 2u0 a0

s
: (31)

In a similar way, for the SKP equation we can take the arbi-

trary constants; c ¼ 0; b0 ¼ 0; c2 ¼ u0

4B a3
0

. Hence, the solitary

solution, (28), after substitution of A2(H, T), A0(H, T), and

d(H, T) from Eqs. (15), (18), and (19), is reduced to

/ ¼ /0 sech2

a0R� u0 þ
1

2
a0kH2

� �
T

W

2
4

3
5
; (32)

where

/0 ¼
3u0

A a0

; and W ¼

ffiffiffiffiffiffiffiffiffiffiffi
4B a3

0

u0

s
: (33)

Here, /0 is the amplitude and W is the width of the ion-

acoustic solitary wave in spherical geometry.

IV. NUMERICAL RESULTS

In this section, we graphically investigate the solutions

of the SKP equation to verify the validity of the GE-method.

A similar numerical analysis is presented in our paper, Ref.

34, for the solutions of the CKP equation, obtained by the

G0=G� expansion method. The same solutions are obtained

in this regard with the GE-method with a proper choice of

the free parameters. So we do not need to represent the CKP

solutions graphically here. It is interesting to notice that the

obtained solutions are hyperbolic solitary (/1, /2, /9), trian-

gular (/3, /4), rational (/5), and Jacobi elliptical (/6 – /8)

type solutions.

In these numerical results, we consider a laboratory and

a cosmic-type DP. For a laboratory-type DP, we mention

here some conditions under which both positively and nega-

tively charged dust grains can be produced. Assume that dust

grains with an equal size are immersed in a plasma of density

N and with ion and electron thermal speeds, Ci and Ce,

respectively. Also assume that the grains are of two different

types (one is metallic with a photoemission efficiency, g ’ 1,

and the other is dielectric with g ’ 0.1, for example) are sub-

jected to photon flux, P. For any isolated grain, the total

charging current is zero. If the potential of a grain relative to

the plasma is /s, then we have22

�Ce e
e/s

kBTe þ Ci 1� e/s

kBTi

� �
þ g

P

N
¼ 0; for /s < 0; (34)

and

�Ce 1þ e/s

kBTe

� �
þ Cie

� e/s
kBTi þ g

P

N
¼ 0; for /s > 0: (35)

For a plasma with Te¼ 2 eV, Ti¼ 0.2 eV, and

mi¼ 6.7� 10�26 kg, these two equations allow calculating
e/s

kBTe
in terms of the ratio P

N, for g ’ 0.1 and g ’ 1. It is found

that, in the range 7� 105m=s � P
N � 5� 106m=s, a plasma

with positive and negative dust grains of density 8

�1015m�3 � N � 6� 1016m�3 is created at photon flux,

P ’ 4� 1022m�2s�1.7 These density values are in the range

of several types of laboratory plasmas.

Under the experimental conditions illuminated above,

we adopt a specific set of real parameters values for a

laboratory-type DP. We consider the example of a laboratory

produced dusty plasma that was addressed by D’Angelo22

and El-Taibany et al.23 Table I. For the sake of comparison,

a cosmic-type dusty plasma which is related to the polar

mesospheric summer echoes (PMSE),21 is considered. The

parameters of our model, corresponding to each case, are

evaluated and presented in Table I. In both cases, we have

made use of the neutrality condition, in order to calculate the

positive to the negative dust number density ratio, Q.

It is clear from the table that the parameters values for

the laboratory-type DP are different from those for the

cosmic-type DP. In the laboratory-type DP, the mass and

charge of positive and negative dusts are in the same order

of magnitude, while for the cosmic-type DP the mass and

charge for negative dusts are much larger than positive ones.

Furthermore, the thermal speed of negative dust, C–, is much

smaller than the positive one, Cþ. In both cases, the ion and

electron temperatures are in the same order of magnitude

ðr ¼ Ti

Te
’ 1Þ. We may infer the high values of the charge

ratio in cosmic-type plasma situations to ion drifts of

�320 km/s which are large enough to excite both dust-

acoustic modes. Ion drifts of several hundreds of km/s are in

the order of solar wind speeds. Furthermore, the dust species
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masses (solid particles, ice, ….) in cosmic plasma are so

much larger than dust masses for the laboratory plasma.

However, the negative dusty plasma mode produces

extremely low frequency waves, since the negative dust

grains are so much more massive than positive dust ðb
¼ m�

mþ
’ 106Þ in the cosmic-type plasma. This makes the

dynamics of the positive dust pretty much obsolete with

respect to the negative ones.

We may now proceed by showing the spatial behaviors,

Fig. 1, of the various solutions of the SKP equation, as given by

Eqs. (20)–(28), at a specific time. From the graphs, one can

divide the profile of the electrostatic potential into three classes;

positive(compressive) sinusoidal type DA pulses, Fig. 1(a),

negative (rarefactive) sinusoidal DA pluses, Fig. 1(b), and a

periodical explosive or blowup solution as shown in Fig. 1(c).

The origin of compressive and rarefactive sinusoidal-type DA

pulse can be explained as follows; the coefficient of the nonlin-

ear term, A, in the SKP equation, given by Eq. (12), depends on

the plasma parameters, Q, r, a, le, li, and b. At certain values

of these parameters, the coefficient of the nonlinear term van-

ishes (A¼ 0) and the solitary wave is not defined, see Fig. 2(a).

For A> 0, a compressive pulse (hump) appears, Fig. 1(a), while

for A< 0 a rarefactive (dip) is obtained, Fig. 1(b). It is impor-

tant to mention that if we neglect the presence of a positive

dust component, i.e., a¼ 0 or a	 1 as in the cosmic-type DP,

we find that A is always positive. This means that only the com-

pressive solitary potential profile exists which is in agreement

with the result obtained by Mamun8 and D’Angelo.22

Additionally, the solution, /2, is a sinusoidal-type peri-

odical solution, which develops a singularity at a finite point,

TABLE I. Laboratory and cosmic-type plasma parameters presented in Ref.

22 and their corresponding calculated parameters in the current model.

Cosmic-type plasma Laboratory-type plasma

Reference 22

Current

model Reference 22

Current

model

mi¼ 1.67� 10–27 kg Q¼ 100 mi¼ 6.7� 10–26 kg Q¼ 0.125

mþ¼ 4� 10–21 kg le¼ 4.995 mþ¼ 2� 10–18 kg le¼ 1.188

m–¼ 4� 10–15 kg li¼ 4.995 m–¼ 2.3� 10–18 kg li¼ 2.08

Zþ¼ 70 r¼ 0.997 Zþ¼ 5 r¼ 1.04

Z–¼ 7000 b¼ 106 Z–¼ 6 b¼ 1.15

Cþ ¼
ffiffiffiffiffiffiffiffiffiffiffi
kBTþ
mþ

r
¼ 0:6 m=s

a¼ 0.01 Cþ¼ 8.94� 10–2 m/s a¼ 0.833

C� ¼
ffiffiffiffiffiffiffiffiffiffiffi
kBT�
m�

r
¼ 6� 10�4 m=s

C–¼ 8.94� 10–2 m/s

Ci ¼
ffiffiffiffiffiffiffi
kBTi

mi

q
¼ 3� 104 m=s Ci¼ 450 m/s

Ce ¼
ffiffiffiffiffiffiffiffiffi
kBTe

me

r
¼ 1:3� 106 m=s

Ce¼ 1.2� 105 m/s

e� ¼
n�0

ni0
¼ 2:86� 10�3 e–¼ 0.08

eþ ¼
nþ0

ni0
¼ 2:86� 10�3 eþ¼ 0.002

FIG. 1. Three-dimensional graphical representations of the SKP solutions / (r, h, t): (a) positive(compressive) sinusoidal type solution, (b) negative (rarefactive)

sinusoidal solution, (c) periodical explosive or blowup solution and (d) time evolution of the solitary electrostatic potential, /1(r, h, t), for the laboratory-type DP.
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i.e., for a fixed time this solution blows up at certain values

of the angular variable, h, Fig. 1(c). This potential excitation

blowup indicates that an instability in the system may occur

due to the effect of nonlinearity. In other words, the varia-

tions of plasma parameters disturb the balance between the

dispersion and nonlinearity of the system which may destroy

the localized excitation stability and lead to an increase in

the electrostatic potential amplitude to very high values.50

The explosive/blowup potential, /2 and the rational-type

potential, /5, may be helpful for explaining many physical

phenomena. The evolution of the electrostatic potential with

time, at a specific angular direction, has a similar behavior.

In Fig. 1(d), we plot the 3D time evolution of the solitary

electrostatic potential, /1, for the sake of clarification. Such

behaviors cannot be noticed in one dimensional problems.

The solitonic type solutions (/1, /6, and /9) are interest-

ing solutions and describe the electrostatic pulses in many

plasma systems. They result from the balance between nonlin-

earity and dispersion forces which may occur at certain values

of plasma parameters. It is reasonable to investigate the influ-

ences of these parameters on the electrostatic solitary

potential profile, /1(r, h, t), represented by Eq. (32). This soli-

tary solution is characterized by the amplitude, /0, and the

width, W, given by Eq. (33). Figure 2(a) displays the A¼ 0

curve for the laboratory-type DP which indicates that the posi-

tive (negative) solitary potential profile for the parameters

whose values lie above (below) the A¼ 0 curve is obtained.

We have also shown graphically how the amplitude, /0, of

the positive and negative solitary potential profiles varies with

r for different values of b. We note that increasing r leads to

an increase in /0 (taller solitons) for rarefactive (b < 3.63)

and compressive (b > 3.63) pulses.

Figures 3–5 show the dependence of W on a, li, and b.

The numerical values of these parameters that we chose in

numerical analysis are relevant to the laboratory-type DP

[(a) panel of the figures] and cosmic-type DP [(b) panel of

the figures] given in Table I. When we take into account

these parameters values, we chose b in the range of

laboratory-type DPs, for which positive and negative solitary

potential profiles exist (i.e., for A 6¼ 0). For the cosmic-type

DP, only positive solitary potential profiles exist for the

whole range of b ranges. It is seen from these figures that W
increases with increasing b for both types of plasma.

Furthermore, as shown in Fig. 3, W increases (i.e., much

wider solitary wave) with a. Figures 4 and 5 show that W
decreases (i.e., much narrower solitary wave) with li and r,

for both types of plasma. Finally, according to Eq. (33), W is

(a)

(b)

FIG. 2. The coefficient of nonlinear term vanishing curve, A¼ 0 vs. b and a,

(b) the variation of compressive (/0 > 0) and rarefactive (/0 < 0) solitary

wave amplitude with plasma parameter, rð¼ Ti

Te
Þ for the laboratory-type DP, at

different values of bð¼ m�
mþ
Þ for the solitary solution represented by Eq. (32).

(a)

(b)

FIG. 3. The variation of the solitary wave width, W, with plasma parameter,

a ¼ Zþ
Z�

	 

for: (a) for laboratory-type DP and (b) cosmic-type DP, at different

values of b ¼ m�
mþ

	 

for the solitary solution represented by Eq. (32).
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inversely proportional to the square root of the coefficient of

the dispersion term,
ffiffiffi
B
p

. Hence, the large W corresponds to

lower values of B and hence low dispersion. Since the soli-

tary wave maintains its energy, the lower dispersion is

substituted by higher nonlinearity in the plasma system.

V. SUMMARY

In this work, we considered the various travelling wave

solutions of two interesting nonlinear evolution equations

with variable coefficients (CKP and SKP equations) by using

the GE-method. These equations describe the basic proper-

ties of DAWs in 3D (cylindrical and spherical) geometries

which are significantly different from the 1D case.51 The 1D

geometry idealizes the problem and may not be appropriate

to describe the real plasma systems either in space or labora-

tory.52 On the other hand, the GE-method is computerizable

and helps us to perform a complicated and tedious algebraic

calculation with a computer. Moreover, this method extracts

a wide range of travelling wave solutions, some of them are

new and interesting. In addition, this method can be used to

solve many other nonlinear equations or coupled equations

with variable coefficients appearing in plasma physics.

We have applied this analysis to investigate the main

characteristics of laboratory and cosmic-type DP systems,

consisting of Boltzmann ions, electrons, and inertial positive

and negative dust fluids. The evolution of such a system is

governed by the nonlinear CKP and SKP evolution equations

in cylindrical and spherical coordinates, respectively. We

have studied the 3D spatial and temporal behaviors of the

obtained solutions of SKP equation and found from the

graphs that the profile of the electrostatic potential is divided

into compressive sinusoidal, rarefactive sinusoidal, and a

periodical explosive or blowup. Some of the obtained solu-

tions have solitonic profile, which results from the balance

between nonlinearity and dispersion due to the variations of

plasma parameters. It is obvious that the variation of such

parameters affects significantly the characteristics of the

electrostatic potential.

It should be pointed out that the investigations of this

study are helpful to understand salient features of nonlinear

behaviour of dusty plasma systems where negative and posi-

tive charged dust particulates, as well as, Boltzmann distrib-

uted electrons and ions are the major plasma species.

Cometary tails, upper mesosphere, Jupiter’s magnetosphere6,

even laboratory experiments,20 etc. are examples of such sys-

tems. One of the most interesting phenomena in this regard is

the trapping of positively (negatively) charged dust particles

by the solitary negative (positive) potential forming larger

sized dust particles or being coagulated into extremely large

sized neutral dust. This phenomenon may occur in cosmic-

type DP systems.13,22 Hence, our investigations should be

helpful to understand the origin of charge separation and dust

coagulation in space plasma with positive and negative dust

particles.

(b)

(a)

FIG. 4. The variation of the solitary wave width, W, with plasma parameter,

li
ni0

z�n�0

� �
for: (a) laboratory-type DP and (b) cosmic-type DP, at different

values of b ¼ m�
mþ

	 

for the solitary solution represented by Eq. (32).

(a)

(b)

FIG. 5. The variation of the solitary wave width, W, with plasma parameter,

rð¼ Ti

Te
Þ for: (a) laboratory-type DP and (b) cosmic-type DP, at different val-

ues of bð¼ m�
mþ
Þ for the solitary solution represented by Eq. (32).
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Finally, it would be noted that the description of DAWs

in cylindrical and spherical geometry are more appropriate

for investigating plasma systems in laboratory experiments,

in fusion reactors and tokamaks, where angular and axial

variations in plasma number densities and velocities cannot

be ignored. Therefore, this study could be expected to be one

of the interesting research topics for future work in this

regard.

APPENDIX: GE-METHOD

The NLPDEq with independent variables, R, H, u, and

t, and dependent variable / takes the form

Fð/;/t;/R;/H;/u;/R;H;u;…Þ ¼ 0: (A1)

This equation can be solved with the GE-method42 as

follows:

Step 1. We assume that Eq. (A1) has solutions of the

form

/ R;H;u; tð Þ ¼ A0 tð Þ þ
Xm

i¼0

Ai tð Þxi R;H;u; tð Þ; (A2)

where x(f) is the solutions of the following ordinary differ-

ential equation (ODE):

dx
df
¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXr

j¼4

cj xj

vuut : (A3)

Step 2: We determine the parameter m by balancing the

highest order derivative terms with the highest order nonlin-

ear terms in Eq. (A1).

Step3: We substitute Eq. (A2) with Eq. (A3) into Eq.

(A1) and equating all terms with the same order of xj and

xj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPr

j¼0 cj xj
q

to zero, then we get a set of over-determined

partial differential equations for the differential functions

Ai(t) (where i¼ 0,1,…, n) and fðR;H;u; tÞ½¼aðTÞRþbðTÞu
þdðH;TÞT�.

Step 4. We solve the obtained over-determined partial

differential equations by using symbolic computation pack-

ages like Mathematica that leads to the explicit expressions

for Ai(t) (where i¼ 1,…, n) and f(R, H, u, t) or the con-

straints among them.

Step 5. We consider the case r¼ 4 in this paper and

hence, Eq. (A2) becomes

x0 ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0 þ c1xþ c2x2 þ c3x3 þ c4x4

p
: (A4)

This equation admits many kinds of fundamental solu-

tions which may be summarized as follows:42

If c3¼ c1¼ 0, Eq. (A4) admits

a bell shaped solitary wave solution

x ¼ k

ffiffiffiffiffi
c2

c4

r
sech

ffiffiffiffiffi
c2

p
f

� �
; c0 ¼ 0 c2 � 0; c4 
 0; (A5)

a kink shaped solitary wave solution

x ¼ k

ffiffiffiffiffiffiffiffiffiffiffi
� c2

2c4

r
tanh

ffiffiffiffiffiffiffiffiffi
� c2

2

r
f

 !
; c0 ¼

c2
2

4c4

c2 
 0; c4 � 0;

(A6)

two triangular type solutions

x ¼ k

ffiffiffiffiffiffiffiffiffi
� c2

c4

r
sec

ffiffiffiffiffiffiffiffi�c2

p
f

� �
; c0 ¼ 0 c2 < 0; c4 � 0; (A7)

x ¼ k

ffiffiffiffiffiffiffi
c2

2c4

r
tan

ffiffiffiffiffi
c2

2

r
f

 !
; c0 ¼

c2
2

4c4

c2 � 0; c4 
 0;

(A8)

a rational type solution

x ¼ � kffiffiffiffiffi
c4
p

f
; c0 ¼ c2 ¼ 0; c4 � 0; (A9)

three Jacobi elliptic doubly periodic type solutions

x ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� c2m2

c4 2m2 � 1ð Þ

s
cn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

2m2 � 1ð Þ

r
f

 !
;

c4 < 0; c2 > 0; c0 ¼ �
c2

2m2 1� m2ð Þ
c4 2m2 � 1ð Þ ; (A10)

x ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� c2

c4 2� m2ð Þ

r
dn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

2� m2ð Þ

r
f

 !
;

c4 < 0; c2 > 0; c0 ¼ �
c2

2 1� m2ð Þ

c4 2� m2ð Þ2
; (A11)

and

x ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� c2m2

c4 m2 þ 1ð Þ

s
sn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� c2

m2 þ 1ð Þ

r
f

 !
;

c4 > 0; c2 < 0; c0 ¼ �
c2

2m2

c4 m2 þ 1ð Þ2
; (A12)

where m is the modulus. The Jacobi elliptic functions possess

the following properties:

sn2fþ cn2f ¼ 1; dn2f ¼ 1� m2sn2f;

sn fð Þ0 ¼ �cn f dn f; cn fð Þ0 ¼ sn f dn f;

dn fð Þ0 ¼ �m2 sn f cn f:

When m! 0, the Jacobi elliptic functions degenerate to

the triangular functions, i.e.,

sn f! sin f; cn f! cos f:

When m! 1, the Jacobi elliptic functions degenerate to

the hyperbolic functions, i.e.,

sn f! tanhf; cn f! sec h f:
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