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Abstract—The combined effects of the polarization force, free and trapped ions, and dust charge variation are
incorporated in a rigorous study of the nonlinear dust acoustic waves (DAWs) propagating in an unmagne-
tized dusty plasma. Owing to the departure from the Boltzmann ion distribution, it is found that the nonlinear
DAWs are governed by a modified Korteweg−de Vries (mKdV) equation. The association between the mKdV
solitary wave and the DAW envelope in the system under consideration is discussed. A modified nonlinear
Schrödinger equation appropriate for describing the modulated DAWs is derived. The modulation instability
(MI) and the dependence of the system physical parameters on the polarization force, trapped ions, and dust
charge variation have been analyzed. It is found that the critical curve separating the stable/unstable regions
is strongly influenced by both of the polarization and the ion trapping parameters. Moreover, increasing the
polarization leads to an increase of the critical wave number, while increasing the trapping parameter yields
the opposite effect. The MI maximum growth rate decreases (increases) as the polarization (trapped ion)
increases. The obtained results may be helpful in better understanding of space observations of the solar ener-
getic particle f lows in interplanetary space and the energetic particle events in the Earth’s magnetosphere.
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1. INTRODUCTION
Dusty plasma physics concerns the properties of

charged dust in the presence of electrons and ions [1].
These media have been observed in lower and upper
mesosphere, planetary magnetosphere, cometary
tails, planetary rings, interplanetary spaces, interstel-
lar media, etc. [2–4]. The importance of studying
dusty plasmas appears also in the laboratory and plas-
mas technology, such as low-temperature physics
(radio frequency), plasma discharge [5], and dusty
crystals [6]. It has been shown both theoretically and
experimentally that the presence of these extremely
massive and highly charged dust grains in a plasma can
either modify the behavior of the usual waves and their
associated instabilities or introduces new eigenmodes
[1, 7–10]. The dust acoustic wave (DAW) arises due to
the restoring force is provided by the plasma thermal
pressure (electrons and ions), while the inertia is due
to the dust mass [1].

The highly charged massive dust grains present in a
dusty plasma may exhibit charge f luctuations due to a
variety of intrinsic plasma charging mechanisms [11].
Moreover, it has been shown that dust charge variation
affects the characteristic of the collective behavior of
plasmas [12]. Xie et al. [13] investigated dust acoustic

solitons with varying dust charge and they showed that
only rarefactive solitary waves exist when the Mach
number lies within an appropriate regime, depending
on the system parameters. Ivlev and Morfill [14] have
considered two limiting cases of ion distribution
(Boltzmann and highly energetic cold ions) in study-
ing dust acoustic solitons with variable charged dust
grains. It is found that the charge variation is crucial if
the particle number density is sufficiently high. Taken
noctilucent clouds and polar mesosphere summer
echoes as proper applications containing vast amounts
of charged dust or aerosols, Kopnin et al. [15] have
studied the effect of the dust charge sign on the prop-
erties of dust acoustic solitons propagating in this
dusty ionosphere. It is shown that when the dust
charge is negative, dust acoustic solitons correspond to
a well in the electron density and a hill in the ion den-
sity. When the dust is charged positively, the situation
is opposite.

If streaming particles are injected into plasmas, we
often find that they evolve toward a coherent trapped
particle state, instead of developing into a turbulent
one. This has been confirmed by computer simula-
tions [16, 17] and experiments [18]. The wave propa-
gation characteristics in collisionless plasmas are sig-
nificantly modified by the presence of the trapped
particles [19]. In most laboratory dusty plasmas, ions1 The article is published in the original.
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are not always isothermal because they could be
trapped by the DAW potential. Accordingly, they fol-
low the trapped/vortex-like distribution [20]. Some
recent theoretical studies focused on the effects of ion
and electron trapping which are common not only in
space plasmas but also in laboratory experiments [21–
24]. In addition, El-Labany et al. [25] have studied
DAWs having trapped ion distribution and dust charge
fluctuation in unmagnetized dusty plasmas. They
found [25] that the dynamics of DAWs are governed by
a modified Korteweg−de Vries (mKdV) equation. The
dust charge f luctuation leads to a decrease of the soli-
ton amplitude.

Mamun et al. [26] stated that the nonlinear propa-
gation of DAWs in a strongly coupled liquid state dusty
plasma with a vortex-like ion distribution is governed
by an mKdV equation. Later, Alinejad [27] found that
the dust temperature, resonant ions, and equilibrium
free electron density significantly change the regions
of the existence of large-amplitude DAWs. Younsi and
Tribeche [28] have investigated the nonlinear local-
ized dust acoustic waves in a charge varying dusty
plasma with trapped ions [28]. They calculated the
trapped ion charging current based on the orbit
motion limited (OML) approach.

On the other hand, the amplitude modulation of
waves propagating in nonlinear dispersive media is a
unique nonlinear phenomenon that is relevant to
many areas including physics and technology [29].The
term “modulational instability” (MI) has been firstly
described by Gailitis [30] and Vedenov and Rudakov
[31]. Actually, Gailitis [30] was the first to obtain the
threshold for MI and demonstrated that the isotropic
spectra of Langmuir oscillations are unstable with
respect to density modulation, though the instability
growth rate was not derived. This was done by Vede-
nov and Rudakov [31] for a gas of plasmons. The self-
modulation involving second harmonic generation is
responsible for the modulational instabilities and pos-
sibly the localization of energy via the formation of the
envelope of excitations (solitons). The MI of ion-
acoustic waves in a relativistic plasma including
trapped electrons has been studied [32]. The associa-
tion between the mKdV solitary wave and the modula-
tionally unstable solitary wave envelope in such plasma
model has been discussed. It is found that the trapped
electrons modify the nonlinearity behavior of the non-
linear Schrödinger equation (NLS) and gives rise to
the propagation of the modulationally unstable ion-
acoustic solitary wave. For more details about the his-
tory of the MI of plasma waves, we consult the reader
to have a look on Vladimirov et al. [29] or Vladimirov
and Popel [33]. Popel et al. [34] have developed a uni-
versal nonlinear formalism for description of the MI
nonlinear effects of random plasma wavepackets.
They found that their equations play the same role as
the set of coupled equations for the fields of modula-
tional perturbations in the case of a single monochro-
matic pump wave and the instability of the broad wave

spectrum is significantly suppressed comparing with
narrow spectrum of the same energy. Later on, Popel
[35] has demonstrated that the “long-scale” instability
of the wave spectra is generally weaker than the insta-
bility of a monochromatic pump wave.

Although dusty plasma physics has much interests
and few papers have considered the effect of trapped
electrons [36, 37] and dust charge f luctuations [22, 25,
28], no one has considered the effects of the polariza-
tion force, trapped ions, and dust charge variation on
the MI of DAWs. Therefore, it is worthwhile to present
a first study for the MI of these waves propagating in
dusty plasma.

The paper is organized in the following fashion. In
Section 2, we present the relevant equations governing
the dynamics of nonlinear DAWs. Furthermore, an
mKdV equation is derived by employing a reductive per-
turbation technique (RPT) in Section 3. In Section 4,
accounting for the trapped ions distribution and using
RPT, a modified NLS equation is derived. We discuss
the MI of the DAW envelopes in Section 5. Section 6
presents numerical illustrations and discussion.

2. GOVERNING EQUATIONS

We consider a dusty plasma model which consists
of extremely massive and highly negatively charged
warm dust grains and Boltzmann distributed elec-
trons, together with free and trapped ions. The charge
neutrality condition requires ,
where , , and  are the unperturbed electron,
ion, and dust number densities, respectively, and 
is the unperturbed number of charges residing on the
dust grain measured in units of the electron charge.

In the presence of low phase velocity of DAWs, the
ions number density follows the vortex-like/trapped
distribution [19, 20]. The polarization force ( ) act-
ing on the dust grain is defined as [38–41]

, where 
is a parameter determining the effect of the polariza-

tion force and , with  being
the ion temperature. For one-dimensional low-fre-
quency DAWs, we have the following dimensionless
basic equations [26, 41]:
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, (4)

where  and  refer to the number density and the
f luid velocity, respectively, and φ is the electrostatic
potential. Here,  is the variable charge number
of the dust grains in units of electron charge, β is a
parameter determining the number of trapped ions
and its magnitude is defined as the ratio of the free
hot ion temperature  to the hot trapped ion tem-
perature  (i.e., ),  ( ) corre-
sponds to a f lat-topped (Maxwellian) ion distribu-
tion [22, 25, 42]. Note that a hole could be created in
the trapped region, corresponding to an under popu-
lation of trapped ions which is represented by nega-
tive β’s (a vortex-like excavated trapped ion distribu-
tion) [45]. The following notations are used

, , , , and

.

In the standard orbit-limited probe model for the
dust grain surface [25, 28, 32, 43–45], the latter is
charged by the plasma species currents. Accordingly,
the variable dust charge  is determined self
consistently by

(5)

where  and  are the average microscopic electron
and ion currents grazing the dust grains surfaces.
Equation (5) is the additional dynamical equation that
is coupled self-consistently to the plasma equations
through the plasma currents. It is noted that the char-
acteristic time for dust motion is of the order of tens of
milliseconds for micrometer sized grains, while the
dust charging time is typically of the order of 10–8 s
[26, 44]. Within the time of charging, the displace-
ment of the grain is thus negligible compared to the
spatial scale of the problem. It follows that the
charging process can be treated as a local phenome-
non, and the convective term on the left-hand side of
charging equation (5) can be neglected [28]. It follows
that we have , which can be presented in
dimensionless form as

(6)

where , , ,

, , , and  is

the equilibrium surface potential on the dust grain.
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Also, it is noted that, we will restrict ourselves to the
case of .

3. NONLINEAR DAWs AND DERIVATION
OF THE mKdV EQUATION

In order to study the dynamics of small-amplitude
DAWs attached to variable charge grains, we derive an
evolution equation from the system of Eqs. (1–4) and
(6) using a RPT [22, 25, 42]. Introducing the stretched
coordinates [42]  and , where
ε is a small parameter and the physical variables
expanded as , 

, , and φ =
, we get

, (7)

where  and

. Putting  and , Eq. (7) agrees

exactly with Xie et al. [13] and with El-Labany and
El-Taibany [22] by ignoring the polarization force
effect. It is obvious that the inclusion of the polariza-
tion force decreases the velocity and the contrary
occurs with the effect of the ion trapping parameter.

To next order of ε, the charging current equation
leads to . Following the regular procedure
of the RPT [22, 25, 42], one can easily obtain the
mKdV given by

(8)

where  and

.

The solution of Eq. (8) is a solitary wave solution
with the form

(9)

where  is the amplitude of the solitary

wave,  is the width of the solitary
wave, , and  is the transformed coordi-
nate with respect to a frame moving with a constant
velocity . It is obvious from Eq. (9) that the allowed
DAW is of rarefactive type independent of the sign of
the nonlinear coefficient A.
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4. DERIVATION 
OF THE MODIFIED NLS EQUATION

AND THE OSCILLATORY WAVE SOLUTION

In order to seek for the oscillatory wave solution
and study the stability of the wave envelope in the
small wavenumber region, we apply the following
expansion. The real dependent variable  is expanded
as [32]

, (10)

(11)

where the fact that  is real requires that the

condition  be satisfied and  pres-
ents a slowly varying complex amplitude. We select a
scaling

, (12)

and apply Eqs. (10) and (11) to mKdV equation (8),
where  is a smallness parameter. If we expand the fre-
quency  in a Taylor series around the wavenumber

, where  the phase factor of the modu-
lational envelope wave depends only on . If we
select the order of , the new scaling,
Eq. (12), is valid in this system. The frequency ω and

 are determined later.
Since we are interested in the modulation of the

plane wave with the frequency ω and the wavenumber
k,  can set equal to zero for all l except .
When , then , because there are no
higher harmonic wave components. The  compo-
nent implies that the plane wave does not exist from
Eq. (11).

To the first order in , the terms  require,

, (13)

and to the second order in , the terms  leads to,

(14)

To the third order in , the  term implies a
modified NLS equation (MNLSE)

. (15)

In order to obtain the solution of Eq. (15), we
rewrite it using the following transformations:
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where . Substitution of expressions (16)
into Eq. (15) yields

(17)

In order to obtain the solution of (17), we replace ϕ
by

, (18)

where  is a slowly varying real amplitude and
. Then, the solution of Eq. (17) is

(19)

where  and 

Returning to original expressions (16), we hence
obtain an envelope solitary wave as the oscillatory
solution

(20)

where .

The phase factor in the  function of expres-
sion (20) gives the velocity V of the envelope solitary
wave. Hence, we obtain

, (21)

and, thereby, the velocity of the solitary wave is pro-
portional to . On the basis of expansion (10), the
perturbed DAW component for  and  is
reduced to

(22)

The linear dispersion relation is obtained as (in the
low-frequency limit):
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where ω is given by Eq. (23). We consider the sum of

three waves, i.e., carrier wave ,

and two small sidebands at  and  [32].
Then, φ is represented as

( )φ φ ζζ = −0 0 0exp( Ω) i

±k K ±ω Ω
(24)

Substituting expression (24) into Eq. (15), we find
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Setting the determinant equals to zero, we obtain
the nonlinear dispersion relation

. (26)

When the nonlinearity is stronger than the disper-

sion, which corresponds to , 

is positive. In this case, the right hand side of Eq. (26)
is negative, Ω becomes complex, and, thereby, side-
bands turn out to be unstable.

When K and  satisfy the conditions

 and .

The maximum growth rate is obtained as

, where  and  are the max-

imum of wavenumber and the maximum of frequency,
respectively.

6. DISCUSSION AND CONCLUSION
A study of small but finite amplitude DAWs in a

system consisting of three components: extremely
massive and highly negatively charged warm dust
grains, Boltzmann distributed electrons, and free and
trapped ions has been carried out using the RPT. We
have analyzed the MI and the dependences of the sys-
tem physical parameters on the polarization term R,
the trapping ion parameter, β and the dust charge vari-
ation presented through the parameter .

The results obtained from this investigation, can be
summarized as listed below.

Figure 1 shows the variation of the angular fre-
quency, ω, against β, R, and  changes. They reveal
that ω increases (decreases) as β (R or ) increases.

The variations of the coefficient of the dispersion
term, , of the MNLSE, Eq. (15), against k,
β, and R changes are displayed in Fig. 2. It shows that
p is always negative, which agrees exactly with previous
studies [26] and [45]. By increasing β, p increases.
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Whereas, p decreases as R increases as illustrated in
Fig. 2b. On the other side, the variation of the term

Fig. 1. (Color online) Variation of ω, against k (a) for R =
0.4, μ = 3, , σd = 0.02, and different values of β; (b)
for , , σd = 0.02, β = 0.3, and different values of
R; (c) for , , σd = 0.02, , R = 0.4, and
different values of γ*.
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 elucidates the existence of transition points

(stability boundary) where  changes its sign.

These points are the critical points that determine the

stable/unstable regions as shown in Fig. 3. The term

 has an essential role in determining the

stability boundaries;  < [>] 0 corresponds

to stable [unstable] region for DAW envelope [32]. As

depicted in Fig. 4, the left region is enhanced by

increasing R and β. However, the right region is shifted

to be appeared at larger k when raising either R or β.

The critical wave number, , is plotted against k for

different values of R and β. This is shown in Fig. 5. It

is obvious that increasing R leads to an increase of ,

while increasing β has the opposite effect.

Moreover, an illustration of variation of the MI

maximum growth rate, Гmax, against k for R and β
changes is provided in Fig. 6. It illustrates that Гmax

decreases as R increases, while Гmax increases with the
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increase of the trapping parameter β as illustrated in
Fig. 6b.

To conclude, we have shown that there is a link
between the mKdV solitary wave and a MNLSE soli-
tary wave envelop. The effect of trapped ions is domi-
nant in the relation between the frequency and wave
number in the dispersion relation. We have examined
the dependence of the MI on the system physical
parameters; the ion trapping parameter β, and dust

charge variation . The numerical illustrations show
that these parameters have strong influences on the
nature of DAWs.

Concerning the MI of the MNLSE, it is found
that:

(i) The wave angular frequency increases
(decreases) as the trapping parameter (polarization
term or dust charge number) increases.

(ii) The dispersion coefficient of the MNLSE is
always negative and by increasing the trapping param-
eter, it increases. Though, it decreases as the polariza-
tion term increases.

(iii) The transition borders (stability boundary)
that determine the stable/unstable regions are strongly

γ*

Fig. 2. (Color online) Variation of the dispersion coeffi-

cient, , against k (a) for , , ,

σd = 0.02, and different values of β; (b) for , ,

σd = 0.02, β = 0.3, and different values of R.
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influenced by both of the polarization and the ion
trapping parameter, i.e., the stable region (corre-
sponding to smaller wavenumber values) is enhanced
by increasing R and β. However, the unstable region
(appeared at higher wavenumber values) is shifted to
appear at larger wavenumber by raising either polar-
ization or trapping parameter.

(iv) Increasing the polarization force leads to an
increase of the critical wave number while increasing
the trapping parameter has the opposite effect.

(v) Finally, the MI maximum growth rate
decreases as the polarization force increases, whereas,
it increases with the increase of the trapping
parameter.

Fig. 4. (Color online) Contour plot  in the

“k–β” domain for different values of R in panel (a) and in
the “k–R” domain for different values of β is presented in

panel (b).
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The present results should also help us to under-
stand the basic features of localized DAW propagating
in the space and laboratory dusty plasmas. Also these
results may be applicable to the investigation of non-
linear modulation phenomena of energetic DAWs
associated with trapped ions propagating in space
plasmas [19, 23]. Moreover, Popel [46] have studied
recently a related problem, where he got the theoreti-
cal values of the lower hybrid wave energy threshold
that agreed well with the results of the Freja experi-
ment. His result concludes that the formation of local-
ized wave structures in the Earth’s magnetosphere is
indeed associated with the development of modula-
tional processes.
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