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Modulated ion acoustic waves in a plasma with Cairns-Gurevich distribution

S. K. El-Labany,a) W. F. El-Taibany,b) and N. A. Zedanc)

Department of Physics, Faculty of Science, Damietta University, New Damietta, P.O. 34517, Egypt

(Received 8 June 2017; accepted 27 October 2017; published online 22 November 2017)

The amplitude modulation of ion acoustic envelope solitary waves in the presence of Cairns-

Gurevich distributed electrons has been investigated. Using a reductive perturbation technique, a

modified nonlinear Schr€odinger equation has been derived. The modulational instability (MI) and

its dependence on the system physical parameters and the combined effects of trapped and nonther-

mal electrons have been analyzed. It is found that the MI maximum growth rate increases

(decreases) as the nonthermality (trapping) parameter increases. The present results could be appli-

cable in explaining the basic features of localized electrostatic disturbance in space observations

such as the solar energetic particle flows in interplanetary space and the energetic particle events in

the Earth’s magnetosphere and also in the laser plasma interaction. Published by AIP Publishing.
https://doi.org/10.1063/1.4989408

I. INTRODUCTION

Recently, the nonlinear wave propagation in plasmas

has become one of the most important subjects in plasma

physics.1 One of these waves is the nonlinear ion acoustic

(IA) wave whose phase velocity lies between the electron

and ion thermal velocities. The nonlinear Schr€odinger equa-

tion (NLSE) could describe the dynamic of the modulated

IA wavepacket, where the resulting solutions of the NLSE

have an envelope structure called envelope solitons.2 The

nonlinear wave propagation in a dispersive medium is gener-

ically subject to amplitude modulation due to the carrier

wave self-interaction or intrinsic nonlinearity of the medium.

Modulational instability (MI) is an important phenomenon in

connection with wavepacket propagation. Few works have

been reported in recent years on the MI and formation of

envelope solitons in electron ion plasma including simulta-

neously the effects of nonthermality and trapping of elec-

trons. The nonlinear interaction of the adiabatic particle

motion with finite-amplitude IA waves (IAWs) in an unmag-

netized plasma is analyzed using a NLSE.3 It is found that

the IAWs remain modulationally stable and the nonlinear

wave can propagate in the form of dark envelope solitons.3

Using a reductive perturbation technique (RPT), Ju-Kui

et al.4 have derived a NLSE to study the MI of finite ampli-

tude IAWs in unmagnetized warm plasmas. They4 reported

that the inclusion of the ion temperature enhances the IAW

stability and changes the produced soliton structures.

The MI of relativistic IAWs in a plasma with trapped

electrons has been studied by Nejoh.5 He investigated the

association between the modified Korteweg de Vries (mKdV)

equation and the modulationally unstable NLSE solitary

waves. Recently, Shalini et al.1 have studied the amplitude

modulation of IA wavepackets in an unmagnetized electron

ion plasma in the context of the Tsallis nonextensive statistics

by deriving the corresponding NLSE equation. It is remarked

that the stable and unstable regions are determined corre-

sponding to different regimes of temperature and density

ratios and the thermodynamic state of plasma species. Using

a standard RPT, a NLSE that describes the nonlinear evolu-

tion of IAWs in a magnetized electron-positron-ion plasma

with q-nonextensive distributed electrons and positrons has

been discussed by Ghosh and Banerjee.6 They showed that

the excitation of both bright and dark envelope solitary struc-

tures is possible in that model.

On the other side, the particle trapping is a commonly

observed phenomenon in both space and laboratory plasmas

due to the phase space holes formed as a result of the hot

electrons trapping in the wave potential.7,8 Such particles

exhibit more complicated shapes showing high-energy tails

as in the weakly collisional corona and solar wind accelera-

tion region.9,10 For instance, the electron’s nonthermal distri-

bution which is characterized by high-energy tails is present

in astrophysical plasma environments such as solar wind,

ionosphere, auroral zone, and also laboratory plasmas.11–13

The appropriate distribution function for these nonthermal

species is known as Cairns distribution.14

As possible approximation, many studies assume that the

velocities of electrons are in local thermal equilibrium, i.e.,

Maxwellian distributed species, known to be isotropically dis-

tributed around the average velocity, while, for expanded

plasmas produced by laser plasma experiments, it is reported

that the high mobility light electrons escape faster into vac-

uum compared to heavier particles, thus generating a self-

consistent ambipolar electric field.15–17 Thus, the electron dis-

tribution function is non-Maxwellian. During electron evolu-

tion, their interaction with the IA potential is possible, and

then, trapped electrons are produced in the wave potential.

Clearly, electrons depart from the Boltzmann distribution, and

hence, a hybrid nonthermal trapped electron exists.18,19 This

hybrid distribution is observed during the acceleration mecha-

nisms of electrons and ions in the context of laser-plasma

acceleration.20 For that reason, the combination of two effects,
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viz., trapping and nonthermality on the self-similar expansion

of the laser plasma, has been studied.21 Their influence on ion

acceleration and production of well collimated multi-MeV ion

beams is a very active and interesting topic in laser and

plasma physics.22 Bara et al.21 have depicted that the presence

of a sufficient number of non-energetic trapped electrons in

the plasma potential wells slows down the plasma expansion,

whereas the presence of energetic electrons makes the influ-

ence of the trapping effect on the self-similar expansion very

weak even in the case where a very small number of energetic

electrons are presented.

Until now, the properties of nonlinear IAW envelope

structures in two component plasmas considering the Cairns-

Gurevich (CG) distribution of electrons through a NLSE

framework have not been investigated. Furthermore, a particu-

lar question is to be answered: how do MI, angular frequency,

group velocity, and the IA envelope solitons are influenced

by the incorporated new effects: the combined effects of non-

thermal and trapped electrons. Therefore, it is expected that

the answer of this question could lead to a significant

improvement for understanding the observed nonlinear wave

MI.21 Therefore, the purpose of the present paper is to make a

detailed study of MI of IAWs in an electron ion plasma,

including the CG distribution of electrons.

This paper is organized in the following fashion. In

Sec. II, we present the relevant equations governing the

dynamics of nonlinear IAWs. Accounting for the CG distri-

bution21 and using a RPT, a modified NLSE is derived in

Sec. III. In Sec. IV, we investigate the effects of CG density

distribution on the MI of the IAW envelopes. The conclusion

is presented in Sec. V.

II. GOVERNING EQUATIONS

We consider the nonlinear propagation of IAWs in a col-

lisionless unmagnetized plasma consisting of electrons obey-

ing the CG distribution and cold fluid ions.21 The dynamics

of the IAWs in such a plasma are governed by the following

equations:

@ni

@t
þ @

@x
niuð Þ ¼ 0; (1)

@u

@t
þ u

@u

@x
þ @u
@x
¼ 0; (2)

@2u
@x2
¼ ne � ni; (3)

where ni and u represent the normalized ion density and

velocity, respectively. u is the electrostatic potential. ni is nor-

malized by the unperturbed density no and u scaled by the ion

sound speed Cs ¼ kBTe

m

� �1=2

, u by kBTe

e , and the space and time

variables are in units of the Debye length kD ¼ �okBTe

noe2

� �1=2

;

and the inverse plasma frequency xp
�1 xp¼ noe2

�om

� �1=2
� �

: Here,

Te is the electron temperature and m is the ion mass. The

CG equation for electrons in the small amplitude limit, viz.,

u� 1; takes the following form:21

ne ¼ 1� buþ 2bu2
� �

1þ u� 4 1� bð Þ
3
ffiffiffi
p
p uð Þ

3
2 þ 1

2
u2

� �
:

(4)

It is noted that based on the Gurevich distribution func-

tion,18,23 Bennaceur-Doumaz et al.24 have investigated the

effect of trapped electrons on the electrostatic potential aris-

ing during the plasma expansion process. Their work is used

to explain the salient features of the plasma expansion pro-

duced by laser ablation. The CG distribution involves two

important indices b and b; b is a parameter determining the

number of trapped electrons and its magnitude is defined as

the ratio of the free electron temperature, Tef ; to the trapped

electron temperature Tet; i.e., b ¼ Tef =Tet: b ¼ 0 (b ¼ 1Þ
corresponds to a flat-topped (Maxwellian) electron distribu-

tion,25,26 and the nonthermal parameter, b, defined as

b ¼ 4a=ð3aþ 1Þ, where a is a parameter determining the

population of nonthermal electrons in our plasma model.

III. AMPLITUDE MODULATION OF IA NONLINEAR
WAVES

In this section, we study the amplitude modulation of

nonlinear IAWs propagating in the proposed plasma medium.

For this purpose, we introduce the following slow variables:

n ¼ � x� ktð Þ and s ¼ �2t ; (5)

where � is a small positive parameter characterizing the

bandwidth of superposed waves. k is the group velocity to be

determined later. The field variables are assumed to be func-

tions of the fast variables ðx; tÞ and the slow variables ðn; sÞ.
It appears convenient to write ni¼ 1þ n. Now, we expand

the field quantities in a power series of � as follows:27

n

u

u

0
B@

1
CA ¼ �4

n 1ð Þ þ �n 2ð Þ þ �2n 3ð Þ þ � � � ;
u 1ð Þ þ �u 2ð Þ þ �2u 3ð Þ þ � � � ;
u 1ð Þ þ �u 2ð Þ þ �2u 3ð Þ þ � � � :

0
BB@

1
CCA: (6)

Introducing Eqs. (5) and (6) into the basic Eqs. (1)–(3)

and setting the coefficients of like powers of � equal to zero,

the following sets of differential equations are obtained. To

the lowest order of � for the field equations; Oð�4Þ,

@n 1ð Þ

@so
¼ � @u 1ð Þ

@no
;

@u 1ð Þ

@so
¼ � @u

1ð Þ

@no
;

@2u 1ð Þ

@n2
0

¼ 1� bð Þu 1ð Þ � n 1ð Þ:

(7)

To the next order in �; O(�5Þ; we get

@n 2ð Þ

@so
þ @u 2ð Þ

@no

¼ k
@n 1ð Þ

@n
� @u 1ð Þ

@n
; (8)

@u 2ð Þ

@so
þ @u

2ð Þ

@no

¼ k
@u 1ð Þ

@n
� @u

1ð Þ

@n
; (9)

@2u 2ð Þ

@n2
0

� 1� bð Þu 2ð Þ þ n 2ð Þ ¼ �2
@2u 1ð Þ

@n0@n
: (10)
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If we continue to the next order in �; O(�6Þ; we obtain

@n 3ð Þ

@so
þ @u 3ð Þ

@no

¼ k
@n 2ð Þ

@n
� @u 2ð Þ

@n
� @n 1ð Þ

@s
; (11)

@u 3ð Þ

@so
þ @u

3ð Þ

@no

¼ k
@u 2ð Þ

@n
� @u

2ð Þ

@n
� @u 1ð Þ

@s
; (12)

@2u 3ð Þ

@n2
0

� 1� bð Þu 3ð Þ þ n 3ð Þ

¼ � @2u 1ð Þ

@n2
þ 2

@2u 2ð Þ

@n0@n
þ 4 1� bð Þ

3
ffiffiffi
p
p u 1ð Þ

� �3=2
" #

: (13)

Regarding Eq. (7), we seek for a solution of the form

n 1ð Þ

u 1ð Þ

u 1ð Þ

0
BB@

1
CCA¼

N 1ð Þ n;sð Þ
U 1ð Þ n;sð Þ
/ 1ð Þ n;sð Þ

0
BB@

1
CCAexp ihð Þþc:c; where h¼xt�kx;

(14)

here, x is the angular frequency and k is the wave number.

Nð1Þ;Uð1Þ; and /ð1Þ are complex functions of the slow varia-

bles ðn; sÞ, and c:c stands for the complex conjugate of the

corresponding quantities. Solving Eq. (7) for Uð1Þ and Nð1Þ

with the aid of Eq. (14), we get

U 1ð Þ

N 1ð Þ

 !
¼ k

x

1
k

x

0
@

1
A/ 1ð Þ: (15)

The linear dispersion relation is obtained as

x ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

k2 þ 1� b

r
: (16)

In Fig. 1, the variation of the angular frequency, x,

against k is plotted for different values of the nonthermal

parameter, b. x increases with the increase in the nonthermal

parameter b which can be extracted also from Eq. (16). x
approaches unity at higher values of k: Equation (16) tells us

that the linear phase velocity, vph ¼ x=k, is independent of

the electron trapped parameter, b. With the exclusion of the

ion temperature (� r) in Ref. 4 and omitting b in the present

work, one can find that the two results are in well agreement.

Furthermore, in the presence of nonthermal electron distribu-

tion, Eq. (16) coincides exactly with that obtained in Ref. 28

by neglecting ri: Until now, /ð1Þðn; sÞ is an unknown com-

plex function whose governing equation will be obtained

later. With the aid of the field solutions proposed in Eq. (14)

and Eqs. (8)–(10), we get

@n 2ð Þ

@so
þ @u 2ð Þ

@no

þ c:c: ¼ kk2

x2

@/ 1ð Þ

@n
eih � k

x
@/ 1ð Þ

@n
eih; (17)

@u 2ð Þ

@so
þ @/

2ð Þ

@no

þ c:c: ¼ kk

x
@/ 1ð Þ

@n
eih � @/

1ð Þ

@n
eih; (18)

@2u 2ð Þ

@n2
0

� 1� bð Þu 2ð Þ þ n 2ð Þ þ c:c: ¼ 2ik
@/ 1ð Þ

@n
eih: (19)

For the second perturbed quantities, nð2Þ; uð2Þ; and uð2Þ, we

seek a solution in the form

n 2ð Þ

u 2ð Þ

u 2ð Þ

0
BB@

1
CCA ¼

N 2ð Þ n; sð Þ
U 2ð Þ n; sð Þ
/ 2ð Þ n; sð Þ

0
BB@

1
CCAexp ihð Þ þ c:c: (20)

From Eqs. (17)–(19) and with the help of Eq. (20), we get

the following equations:

i xN 2ð Þ � kU 2ð Þ
� �

¼ k

x
kk

x
� 1

	 

@/ 1ð Þ

@n
; (21)

i xU 2ð Þ � k/ 2ð Þ
� �

¼ kk

x
� 1

	 

@/ 1ð Þ

@n
; (22)

� k2 þ 1� bð Þ/ 2ð Þ þ N 2ð Þ ¼ 2ik
@/ 1ð Þ

@n
; (23)

whose solutions for the second order perturbed quantities are

given by

N 2ð Þ ¼ k2

x2
/ 2ð Þ þ 2ik

x2
� kk

x
þ 1

	 

@/ 1ð Þ

@n
; (24)

U 2ð Þ ¼ k

x
/ 2ð Þ þ i

x
� kk

x
þ 1

	 

@/ 1ð Þ

@n
; (25)

2ik � kk

x3
þ 1� b

k2

	 

@/ 1ð Þ

@n
¼ 0: (26)

The coefficient of @/ 1ð Þ

@n appeared in Eq. (26) must vanish in

order to have a non-zero solution for / 1ð Þ. Therefore, the

group velocity, k, is given by

k ¼ x3 1� bð Þ
k3

¼ @x
@k

: (27)

Figure 2 shows the variation of k against k for different

values of the nonthermal parameter b. For smaller values of

k, k decreases with the increase in k, but it increases with an
FIG. 1. Variation of the angular frequency, x, against the wave number k
for different values of the nonthermal parameter, b.
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increment of b. This behavior continues until reaching a cer-

tain value of kðffi 0:6Þ, and then, k turns to decrease by

increasing b.

To obtain the solution of O(�6Þ equations, we use Eq.

(16) and the solutions (24) and (25) into Eqs. (11)–(13) to

obtain

@n 3ð Þ

@so
þ @u 3ð Þ

@no

þ k

x
� kk

x
þ 1

	 

@/ 2ð Þ

@n
eih

þ i

x
� kk

x
þ 1

	 

1� 2kk

x

	 

@2/ 1ð Þ

@n2
eih

þ k2

x2

@/ 1ð Þ

@s
eih þ c:c: ¼ 0; (28)

@u 3ð Þ

@so
þ @u

3ð Þ

@no

� ik
x
� kk

x
þ 1

	 

@2/ 1ð Þ

@n2
eih

þ � kk

x
þ 1

	 

@/ 2ð Þ

@n
eih þ k

x
@/ 1ð Þ

@s
eih

þ c:c: ¼ 0; (29)

@2u 3ð Þ

@n2
0

þ @
2/ 1ð Þ

@n2
eih � 2ik

@/ 2ð Þ

@n
eih � 1� bð Þu 3ð Þ

þ n 3ð Þ þ 4 1� bð Þ
3
ffiffiffi
p
p ð/ 1ð ÞÞ3=2 þ c:c ¼ 0: (30)

Since we concern with the equations containing the coeffi-

cients of expðihÞ terms only, we have to examine the term

ð/ 1ð ÞÞ3=2
, which can be rewritten as suggested by Demiray27

ð/ 1ð ÞÞ
3
2 ¼ j/ 1ð Þj

3
2jei sþhð Þ þ e�i sþhð Þj

3
2

¼ 2
ffiffiffi
2
p
j/ 1ð Þj3=2j cos3=2 sþ hð Þj; (31)

where j/ 1ð Þj refers to the / 1ð Þ modulus and s is the argument

of the complex variable / 1ð Þ. In order to ensure that ð/ 1ð ÞÞ3=2

remains real, we must have the condition jðsþ hÞj � p=2.

Now, we return back to Eqs. (28)–(30) and introduce a

solution in the form ðnð3Þ; uð3Þ; uð3ÞÞ ¼
P1

n¼1 N3n;U3n;/3n
� �

exp ðinhÞ: Then, we can extract the following equations

(related to the coefficients of expðihÞ terms) as follows:

i xN31 � kU31ð Þ ¼ k

x
kk

x
� 1

	 

@/ 2ð Þ

@n
þ i

x
kk

x
� 1

	 


� 1� 2kk

x

	 

@2/ 1ð Þ

@n2
� k2

x2

@/ 1ð Þ

@s
; (32)

iðxU31 � k/31Þ ¼ ik
x
� kk

x
þ 1

	 

@2/ 1ð Þ

@n2
þ kk

x
� 1

	 


� @/
2ð Þ

@n
� k

x
@/ 1ð Þ

@s
; (33)

� k2þ1�bð Þ/31þN31¼�@
2/ 1ð Þ

@n2
þ2ik

@/ 2ð Þ

@n

�0:87
1�bð Þffiffiffi

p
p j/ 1ð Þj

1
2/ 1ð Þ: (34)

Eliminating N31; U31; /31 among Eqs. (32)–(34), with

the use of dispersion relation, Eq. (16), and the definition of

k, Eq. (27), we finally reduce these equations to the follow-

ing modified NLSE:

i
@/ 1ð Þ

@s
þ P

@2/ 1ð Þ

@n2
þ Qj/ 1ð Þj

1
2/ 1ð Þ ¼ 0; (35)

where

P ¼ x3

2k2

kk

x3
�kk

x
þ 1

	 

� 1

x2
�kk

x
þ 1

	 

1� 2kk

x

	 

þ 1

� �
;

(36)

and the nonlinearity coefficient

q ¼ 0:43
x3

k2

1� bð Þffiffiffi
p
p

ffiffiffiffiffiffiffiffiffiffiffi
j/ 1ð Þj

q
ð� Qj/ 1ð Þj

1
2Þ: (37)

The variations of the coefficient of the dispersion term,

P, against k and b are displayed in Fig. 3. It is shown that P
is always positive irrespective of the values of k and the

plasma parameters. This result agrees exactly with that done

by Demiray.27 Also, at smaller values of k, it is depicted that

P increases as b increases until reaching a certain value of

FIG. 2. Variation of the group velocity, k, against the wave number k for dif-

ferent values of the nonthermal parameter, b.

FIG. 3. Variation of the dispersion coefficient, P, against the wave number k
for different values of the nonthermal parameter, b.
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k ffi 1:1ð Þ, and then, P begins to decrease with an increase in

b. In addition, P increases as k (for smaller values of k) until

reaching a maximum peak, and then, it decreases corre-

sponding to raising the values of k (for higher k values).

IV. STABILITY OF THE OSCILLATORY WAVE
SOLUTION

In order to investigate the stability of the produced enve-

lope solitons, we follow the analysis presented by Nejoh5 and

El-Labany et al.29 Considering the sum of three waves, i.e.,

carrier wave /0ðnÞ ¼ /0 expð�iX0nÞ, with frequency shift

X0 and two small sidebands at k 6 K and x 6 X.

/ 1ð Þ ¼ /o nð Þ 1þ /þexp i Kn� Xsð Þ½ 	
�

þ/
�exp �i Kn� X
sð Þ½ 	
�
: (38)

Substituting (38) into the modified NLSE, we obtain the non-

linear dispersion relation

X� K
@x
@k

	 
� �2

¼ P �j/oj
@q

@j/oj
þ PK2

	 

K2: (39)

When the nonlinearity is stronger than the dispersion

(j/oj @q
@j/oj

> PK2Þ; Pj/oj @q
@j/oj

is positive. In this case, the

right hand side of (39) is negative, X becomes complex, and

thereby, sidebands turn out to be unstable. As seen, the term

Pj/oj @q
@j/oj

� �
has an essential role in determining the stable

boundaries; for Pj/oj @q
@j/oj

� �
< [>] 0, the stable (unstable)

region for the IAW envelope exists,5,29 while, in the present

investigation, the variation of the term Pj/oj @q
@j/oj

elucidates

the existence of the unstable region as shown in Fig. 4.

As depicted in Fig. 4, b and b affect strongly the amplitude

of the term Pj/oj @q
@j/oj

not the stability domain. When K

and ReðXÞ satisfy the conditions, Kmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j/oj
2P

@q
@j/oj

q
and Xmax

¼ Kmax
@x
@k

� �
, the maximum growth rate is obtained as Cmax

¼ 1
2
j/oj @q

@j/oj

h i
; where Kmax and Xmax are the maximum

wave number and the maximum frequency, respectively.

Figure 5 illustrates the dependence of the instability growth

rate, Umax, on b and b. It is clear that Umax increases with the

increase in the nonthermality of electrons, but the increment

of the electron trapped parameter reduces the instability

growth rate. These results are coincident with that obtained

by Ghosh et al.28

V. CONCLUSION

In the present work, we have investigated in detail the MI

of IAW envelopes in an unmagnetized collisionless plasma

consisting of ions and electrons obeying a hybrid CG distribu-

tion. A modified NLSE with a fractional power of electrostatic

potential governing the evolution of these IAW envelopes is

derived. It is found that unstable IAW modes only exist in the

plasma system under consideration. Concerning the MI of the

modified NLSE, we can conclude that

(i) The wave angular frequency increases as the nonthermal-

ity parameter increases. The group velocity decreases

with the increase in k, and it increases (decreases) with an

increment of b (for smaller values of k) [(for higher val-

ues of k)], while the trapping parameter does not contrib-

ute to both the linear wave frequency and the group

velocity.

(ii) In this model, the dispersion coefficient of the modified

NLSE is always positive. The sign of the term Pj/oj @q
@j/oj

(which determines the unstable wave regime) is always

FIG. 4. Variation of the product ðpj/oj @q
@j/o j
Þ against k (a) for different values

of b where the nonthermal effect is ignored (b ¼ 0Þ and in panel (b) against

k for different values of b where b! 1 is presented.

FIG. 5. The growth rate of instability Umax is plotted against the wave num-

ber of modulation k for fixed values of nonthermal and trapped parameters

ðb; bÞ, respectively.
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positive. Therefore, the unstable mode only exists in

the presence of CG distribution. In the presence of the

trapped (non�energetic) electrons, it is found that

increasing the trapping parameter leads to a decrease in

the amplitude pj/oj @q
@j/oj

. Whereas, in the presence of the

energetic (nonthermal) electrons, it is depicted that the

nonthermal parameter has the inverse effect on the ampli-

tude of pj/oj @q
@j/oj

: Both nonthermal and trapping param-

eters in the CG distribution have no effect on the domain

of the unstable region.

(iii) The MI maximum growth rate increases (decreases)

as the nonthermality (trapping) parameter increases.

Finally, the present investigation would be helpful to

understand the basic features of localized IA perturbations

propagating in laboratory plasmas such as laser-plasma inter-

action21 and also in the space plasma: pulsar magnetosphere,

the auroral zone, and the upper ionosphere, where plasmas

with trapped and energetic electrons are often present.6,15
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