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Langmuir oscillations in a nonthermal nonextensive electron-positron
plasma
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(Received 6 December 2016; accepted 26 January 2017; published online 15 February 2017)

The high-frequency Langmuir-type oscillations in a pure pair plasma are studied using Vlasov-

Poisson’s equations in the presence of hybrid nonthermal nonextensive distributed species. The

characteristics of the Langmuir oscillations, Landau damping, and growing unstable modes in a

nonthermal nonextensive electron-positron (EP) plasma are remarkably modified. It is found

that the phase velocity of the Langmuir waves increases by decreasing (increasing) the value of

nonextensive (nonthermal) parameter, q (a). In particular, depending on the degree of nonthermality

and nonextensivity, both damping and growing oscillations are predicted in the proposed EP plasma.

It is seen that the Langmuir waves suffer from Landau damping in two different q regions.

Furthermore, the mechanism that leads to unstable modes is established in the context of the

nonthermal nonextensive formalism, yet the damping mechanism is the same developed by Landau.

The present study is useful in the regions where such mixed distributions in space or laboratory

plasmas exist. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4976128]

I. INTRODUCTION

The study of electron-positron (EP) plasma has been

highlighted in the past three decades by plasma physicists.

Such time-space parity disappears when studying a pure pair

plasma. Obviously, pair plasmas consisting of electrons and

positrons have attracted a special interest because of their

significant applications in astrophysics situations such as

active galactic nuclei,1 pulsar and neutron star magneto-

sphere,2 solar atmosphere,3 accretion disk,4 black holes,5 the

early universe,6 and many others. For example, the detec-

tions in radio sources suggest that extragalactic radio jets are

composed mainly of an EP plasma.7 Additionally, the crea-

tion of EP plasma in pulsars is essentially due to energetic

collisions among particles that are accelerated by the electric

and magnetic fields exposed to these systems.8 On the other

hand, the successful achievements for the creation of EP

plasmas in laboratories have been frequently reported.9 It

has been observed that the annihilation time of EP pairs

in typical experiments is often long compared with typical

confinement times.10,11

Three kinds of electrostatic modes have been observed:12

the acoustic waves in a relatively low-frequency band, an

intermediate-frequency backward like mode, and the

Langmuir-type waves in a relatively high frequency band. To

our knowledge, a satisfactory and accepted theoretical justifi-

cation for the explanation of the high-frequency Langmuir

oscillations in a pure pair plasma in the presence of nonther-

mal nonextensive plasma has not been carried out. Here, we

will discuss in detail the high-frequency Langmuir oscilla-

tions in EP plasma using the kinetic theory model in the con-

text of nonthermal nonextensive species. It is often observed

that the physical distribution of particles in space plasmas as

well as in laboratory plasmas is not exactly the Maxwellian

distribution, and the particles show significant deviations

from the thermal distribution.13–15 The presence of nonther-

mal particles in space plasmas has been widely confirmed by

many spacecraft measurements.16 In many situations, the

velocity distributions show nonMaxwellian tails decreasing

as a power-law distribution. Several models for phase-space

plasma distributions have deviations from purely the

Maxwellian behavior and become rather popular in recent

years, such as the nonthermal distribution proposed by Cairns

et al.14 which was used to explain the solitary electrostatic

structures involving density depletions observed in the upper

ionosphere in the auroral zone by the Freja satellite.17,18 In

addition, there are a number of evidences exhibiting the non-

extensive statistics which is a good framework for describing

certain physical systems, such as galaxy clusters,19 plasmas,20

and turbulent systems.21

On the other hand, in the presence of nonextensive sta-

tistics:22 Lima et al.23 have studied the Langmuir oscillations

and Landau damped waves in a collisionless electron ion

plasma in the context of nonextensive statistics. In particular,

they have stressed that, due to the long-range nature of

Coulombic interactions in the plasma, the standard Maxwell-

Boltzmann distribution may provide only a very crude

description of such systems, even in the collisionless limit.

Also, the nonlinear Landau damping of the electrostatic

waves in an unmagnetized collisionless electron ion plasma

has been investigated numerically using a semi-Lagrangian

Vlasov-Poisson code.24

Landau25 has shown that the resonant interaction of a

wave with particles resulted in the collisionless damping of

the observed electrostatic waves. Also, Landau damping

increases significantly when the distribution functions con-

tain superthermal particles and shoulders in the distribution

function profile.26,27 Furthermore, Liyan and Jiulin28 have

discussed the dispersion relation and Landau damping of
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ion-acoustic waves in a collisionless magnetic-field-free

plasma including nonextensive statistics. Particularly, they

have emphasized that the physical state described by the q
distribution (Tsallis’s distribution) is not the thermodynamic

equilibrium. Recently, Saberian et al.11,13 have discussed the

properties of the Langmuir oscillations11 and the low-

frequency acoustic-like modes,13 Landau damping, and

growing unstable modes in an EP plasma using Vlasov-

Poisson’s equations in the context of Tsallis’s nonextensive

statistics. They found that decreasing the nonextensive index

q leads to an increment of the phase velocity of the

Langmuir waves. Qureshi et al.29 have studied the effect of

non-Maxwellian distribution function on Landau damping

rates of Langmuir waves when a small hot electron popula-

tion is present. They found that the departure from

Maxwellian distributions significantly alters the damping

rates. Strong damping is detected for highly nonMaxwellian

distributions as well as for plasmas with a higher density and

hot electron population.29

In the present work, we will investigate the Langmuir

oscillations in a magnetic field-free collisionless EP plasma

in the context of the nonthermal nonextensive ða; qÞ statis-

tics,15 emphasizing the possible damping and instability. In

Sec. II, a kinetic theory model based on Vlasov-Poisson’s

equations is applied for deriving the dielectric function,

Dðk; xÞ, for longitudinal waves in an unmagnetized pair

plasma. We calculate the dispersion relation for the

Langmuir oscillations in Sec. III. Also, the real and imagi-

nary parts of the frequency of Langmuir oscillations are

obtained and the Landau damping and instability of the

Langmuir modes are discussed. Finally, a summary of our

results is given in Sec. IV.

II. THE MODEL EQUATIONS

To describe the electrostatic collective modes in an EP

plasma, we consider a spatially uniform EP plasma at the

equilibrium state. If at a given time t ¼ 0; a small amount of

charge is displaced in the plasma, the initial perturbation

may be described by

fsðt ¼ 0Þ ¼ fs0ð~vÞ þ fs1ð~x;~v; t ¼ 0Þ; fs1 � fs0; (1)

where fs0 corresponds to the unperturbed and time indepen-

dent stationary distribution. However, fs1 is the correspond-

ing perturbation about the equilibrium state, where s stands

for electrons and positrons ðs ¼ e or pÞ. Assuming that the

perturbation is electrostatic and the displacement of charge

gives rise to a perturbed electric field but no magnetic field

released. A one-dimensional Vlasov-Poisson system is given

by25,30

@fe1

@t
þ~v: @fe1

@~x
þ e

m
~r/1:

@fe0

@~v
¼ 0; (2)

@fp1

@t
þ~v: @fp1

@~x
� e

m
~r/1:

@fp0

@~v
¼ 0; (3)

r2/1 ¼ 4pne

ð
ðfe1 � fp1Þd~v; (4)

where e;m, and n denote, respectively, the absolute charge,

mass, and number density of the electron and /1 is the elec-

trostatic potential produced by the perturbation. This set of

linearized equations for perturbed quantities may be solved

simultaneously to investigate the plasma properties for the

time intervals shorter than the binary collision times. The

standard technique for simultaneously solving the differen-

tial equations, Eqs. (2)–(4), is the method of integral trans-

forms.25,30 Another simplified method for studying the

longitudinal waves, with the frequency x and the wave vec-

tor ~k, is to assume that the solution has the form,11

fs1ð~x;~v; tÞ¼ fs1ð~vÞeið~k :~x�xtÞ; and /1ð~x; tÞ¼/1eið~k :~x�xtÞ: (5)

We consider the x-axis to be along the direction of the

wave vector ~k and thus vx ¼ u. Then, applying Eq. (5) to

Eqs. (2)–(4), we get the dispersion relation for longitudinal

waves in the proposed EP plasma as follows:

D k;xð Þ ¼ 1� 4pne2

mk2

ð @
@u

fe0 uð Þ þ fp0 uð Þ
� �

u� x
k

du ¼ 0; (6)

where Dðk;xÞ is the dielectric function of the longitudinal

oscillations propagating in the EP plasma. We can investi-

gate the response of the EP plasma to an arbitrary perturba-

tion via the response occurred in the dielectric function

Dðk;xÞ. In general, the frequency x that satisfies the disper-

sion relation, Eq. (6), is complex, i.e., x ¼ xr þ ixi.

However, in many cases Re½xðkÞ� � Im½xðkÞ�, and the

plasma responds to the perturbation a long time after the

initial disturbance with oscillations at a range of the well-

defined frequencies. We can determine the normal modes

corresponding to Eq. (6). It should be further mentioned that

when Vlasov-Poisson’s equations are solved as an initial

value problem, it is possible to obtain the solutions with neg-

ative or positive values of xi. This can be explicitly seen

from the electrostatic potential associated with the wave

number k of the excitation as follows:

/1ðx; tÞ ¼ /1eiðkx�xr tÞexi t; (7)

where a solution with negative (positive) xi displays a

damped wave (unstable mode).

With the constraint of the weak damping or growth, i.e.,

xi � xr , the dielectric function Dðk;xÞ given in Eq. (6) can

be Taylor expanded in the small quantity xi, and then we

explicitly find the real and imaginary parts of the dielectric

function as follows:11

Dr k;xrð Þ ¼ 1� 4pne2

mk2
P:V:

ð @
@u

fe0 uð Þ þ fp0 uð Þ
� �

u� xr

k

du; (8)

Di k;xrð Þ ¼ �p
4pne2

mk2

� �
@

@u
fe0 uð Þ þ fp0 uð Þ
� �� �

u¼xr
k

: (9)

Here, the analytic continuation of the velocity integral in Eq.

(6) has been made over u, along the real axis, which passes
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under the pole at u ¼ x
k with the constraint of weakly damped

waves, where P:V:
Ð

denotes the Cauchy principal value.11,13

By these relations and neglecting the terms of order ðxi

xr
Þ2,

xr and xi can be computed, respectively, from the

relations30

Drðk;xrÞ ¼ 0 (10)

and

xi ¼ �
Di k;xrð Þ

@Dr k;xrð Þ=@xr
: (11)

III. LANGMUIR OSCILLATIONS WITH NONTHERMAL
NONEXTENSIVE DISTRIBUTION

To obtain the features of the Langmuir waves in the EP

plasma in the context of the ða; qÞ statistics, we assume that

the stationary state of the plasma obeys the ða; qÞ distribution

function that is given by15

fs0 uð Þ ¼ Cq;a 1þ a
u4

u4
ts

 !
1� q� 1ð Þ u2

2u2
ts

( )1= q�1ð Þ

; (12)

where uts ¼ ðkBTs=msÞ1=2
is the thermal velocities, TsðmsÞ is

the s species temperatures (mass), and

Cq;a ¼

ns0

ffiffiffiffiffiffiffiffiffiffi
ms

2pTs

r C
1

1� q

� �
1� qð Þ

5
2

C
1

1� q
� 5

2

� �
3aþ 1

1� q
� 3

2

� �
1

1� q
� 5

2

� �
1� qð Þ2

" # ; for � 1 < q < 1; 13að Þ

ns0

ffiffiffiffiffiffiffiffiffiffi
ms

2pTs

r C
1

q� 1
þ 3

2

� �
q� 1ð Þ5=2 1

q� 1
þ 3

2

� �
1

q� 1
þ 5

2

� �

C
1

q� 1
þ 1

� �
3aþ q� 1ð Þ2 1

q� 1
þ 3

2

� �
1

q� 1
þ 5

2

� �" # for q > 1 13bð Þ

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

is the constant of normalization. Here, a is a parameter deter-

mining the number of nonthermal particles present in our

plasma model, q stands for the strength of nonextensivity,

and C denotes the standard Gamma function. For q ¼ 1, the

distribution of Cairns et al.14 is recovered. For q > 1 and as

the nonextensive character of the nonthermality increases,

the distribution (12) shoulders become less prominent and

high-energy states are less probable than in the extensive

nonthermal case.15 For q < 1, high-energy states are more

probable than in the extensive case.

It is remarked that the Vasyliunas–Cairns distribution

presented in Ref. 31 involves the indices a and j (which is

the superthermality parameter in the plasma system). The

Vasyliunas–Cairns distribution function must satisfy j >
3=2 and 0 < a < 1. The empirically derived kappa distribu-

tion function in space plasmas is equivalent to the q-

distribution function in Tsallis nonextensive formalism, in

the sense that the spectrum of the velocity distribution func-

tion in both models shows similar behavior. In fact, both the

kappa distribution and the Tsallis q-nonextensive distribution

describe deviations from the thermal distribution.13

Particularly, Leubner32 showed that the nonextensive distri-

bution is very close to the kappa distribution which is a con-

sequence of the generalized entropy favored by the

nonextensive statistics, and he proposed a link between the

Tsallis nonextensive and the kappa distributions. The rela-

tion between the two parameters q to j is j ¼ 1=ð1� qÞ.32

Furthermore, Livadiotis and McComas33 examined how

kappa distributions arise naturally from the Tsallis statistical

mechanics.

Here, we are interested in the high-frequency oscilla-

tions with the phase velocity much greater than the thermal

speed of the electrons and positrons x
k � u
� �

. Then, the

Cauchy principal value of Eq. (8) could be evaluated as

follows:

�
ðþumax

�umax

@

@u
fe0 uð Þ þ fp0 uð Þ
� �

u� xr

k

du

¼ k

xr

ðþumax

�umax

@fe0 uð Þ
@u

þ @fp0 uð Þ
@u

� �

� 1þ k

xr
uþ k2

x2
r

u2 þ k3

x3
r

u3 þ � � �
 !

du: (14)

Here, in order to include both q < 1 (superextensivity) and

q > 1 (subextensivity) cases, we have denoted the integra-

tion limits in Eq. (14) by 6umax. In fact, the integration limits

are unbounded, i.e., 6umax ¼ 61 for q< 1, and they are

given by the q dependent thermal cutoff umax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2kBTs

msðq�1Þ

q
for

q> 1.13

In the present study, we shall consider Te ¼ Tp ¼ T
which is in agreement with the experimental works of the

EP plasma comprised of particles with the same dynamics.12

In a different manner, comparing the electron-electron,
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positron-positron, and electron-positron relaxation time scales reveals that the creation of a pure EP plasma with a considerable

difference in the temperature of the pairs is not possible in practice.34

Using Eq. (14), the real part of the dielectric function included in Eq. (8) reads as

Dr k;xrð Þ ¼ 1þ 8pne2

m

I1

x2
r

þ k2I2

x4
r

 !
; (15)

where

I1 ¼ �
ffiffiffi
p
p

Cq;a

4
1� q

2u2
te

� �5=2

3a
u4

te

C � 5

2
þ 1

1� q

� �
þ q� 1ð Þ2

u4
te

C
1þ q

2� 2q

� �

C
1

1� q

� �
2
6664

3
7775

and

I2 ¼
3
ffiffiffi
p
p

Cq;a

8
1� q

2u2
te

� �7=2

15a
u4

te

�1þ qð Þ2 þ q� 1ð Þ2

4u4
te

�3þ 5qð Þ �5þ 7qð Þ
" #

C � 7

2
þ 1

1� q

� �

�1þ qð Þq C
q

1� q

� � :

xr corresponding to Langmuir waves in a ða; qÞ EP plasma is obtained by setting Drðk;xrÞ ¼ 0 that leads to

xr ¼ xp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I1

2
1þ 3 kkDð Þ2 2 Z2

I1Z1 1� qð Þ

� �s
; (16)

where xp ¼ 8pne2

m

	 
1=2

; Z1 ¼ I1
�Cq;a

ffiffi
p
p

4
1�q

2u2
te

	 
5=2

, and Z2 ¼ I2
3
ffiffi
p
p

Cq;a

8
1�q

2u2
te

	 
7=2

; kD is the Debye length that becomes, in a charge-neutral EP plasma,

k�2
D ¼ 4pne2

kB

1
Te
þ 1

Tp

	 

. On the other hand, using Eq. (9), we can obtain the imaginary part of the dielectric function as follows:

Di k;xrð Þ ¼ �
px2

p

k2

4aCq;ax3
r

u4
tek3

1� q� 1ð Þ
2u2

te

x2
r

k2

" #1= q�1ð Þ

� Cq;axr

u2
tek

1þ a
u4

te

x4
r

k4

 !
1� q� 1ð Þ

2u2
te

x2
r

k2

" # 2�qð Þ= q�1ð Þ
8<
:

9=
;: (17)

Equation (17) is quite compatible with the results of Saberian et al.,11 by considering a! 0 and q ! 1. With the help of Eqs.

(15) and (17), we can calculate xi as follows:

xi ¼ �
p

k2I1

aCq;ax6
pI3

1

4k3u4
te

1� q� 1ð Þ
2k2u2

te

x2
pI1

2
1þ 3 kkDð Þ2 2 Z2

I1Z1 1� qð Þ

� �� � !1= q�1ð Þ

�
Cq;ax4

pI2
1

8ku2
te

1þ
ax4

pI2
1

4k4u4
te

 !2
4

� 1� q� 1ð Þ
2k2u2

te

x2
pI1

2
1þ 3 kkDð Þ2 2 Z2

I1Z1 1� qð Þ

� �( ) 2�qð Þ= q�1ð Þ35: (18)

Equations (17) and (18) have been derived for the high-frequency oscillations with x
k �

2kBTs

m

	 
1
2

. One basic feature of our anal-

ysis is the inclusion of the nonthermality, a, and nonextensivity, q, of the system. Therefore, depending on these parameters,

both the damping and growth of the electrostatic oscillations may be happening in the proposed EP plasma.

IV. DISCUSSION

Equations (16) and (18) describe the Langmuir oscillations in an EP plasma. Hereafter, we will discuss the dispersion rela-

tion and damping or growth of the Langmuir oscillations by analyzing these expressions.

A. Dispersion relation

In Figs. 1(a) and 1(b), we depict the dispersion curve (real part, xr) of the Langmuir oscillations showing the influence of

the spectral index q and the nonthermal parameter a. It can be seen that, for a given a value, the phase velocity of the
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Langmuir waves increases as q decreases. Next, keeping

q ¼ 0:7, xr increases with the increase of a as seen in Fig.

1(b). This coincides with what presented in Refs. 11 and 35.

The q distribution function with q < 1 indicates that the sys-

tems contain more superthermal particles (superextensivity).

However, with q < 1; the distribution is strongly suggested

for the real superthermal plasmas. It is expected that the

illustration with q < 1 (cf. Fig. 1) is more probable for space

plasma systems.11

B. Landau damping and growing oscillations

1. Superextensive or superthermal plasmas ðq < 1Þ

The Landau damping and growing Langmuir modes in a

superextensive EP plasma can be discussed via analyzing

the imaginary part of the frequency, given in Eq. (18), for the

values of q < 1. In Fig. 2(a), we have plotted xi against

the nonextensivity index q. It is explicitly seen that both

the damped ðxi < 0Þ and the growing unstable oscillations

ðxi > 0Þ are predicted in the present EP plasma. Our numeri-

cal analysis shows that in two q domains, i.e., 0:31 � q
� 0:335 and 0:52 � q � 0:6, the longitudinal oscillations are

unstable, due to the fact that x0s have the positive imaginary

parts and then the associated electrostatic modes will grow in

time [cf. Eq. (7)].

To interpret the physical mechanism which leads to this

instability, we have the nonthermal nonextensive distribution

with q < 1 which describes a system with a large number of

superthermal particles. Therefore, our solution for Vlasov-

Poisson’s equations with q < 1 indicates an evolution which

started from a stationary state with a large portion of super-

thermal particles. The Langmuir modes may gain energy

from these superthermal particles and result in growing oscil-

lations in time. In other words, this instability arises from a

stationary state that described by a superthermal plasma.

On the other hand, the Langmuir waves have Landau

damping in two q domains; 0:335 � q � 0:52 and 0:6 � q
� 0:9; with the nonthermality parameter að	 0:4Þ. The

Landau damping is a resonant phenomenon among the

plasma particles (electrons and positrons) and the wave

attached to the particles.25,34 Our analysis reveals that the

damping rate in the first q domain, i.e., 0:335 � q � 0:52, is

heavy and it would disappear after a few periods of time. But

in the other region, 0:6 � q � 0:9; the Langmuir oscillations

are weakly damped. These are the normal modes of the

plasma which would persist in several oscillations periods.

FIG. 1. The effect of the nonextensivity on the dispersion relation of Langmuir waves with k ¼ 0:05 in (a), after which (b) the effect of the nonthermality on

the dispersion relation of Langmuir waves.

FIG. 2. The Landau damping rates (imaginary part of the frequency) (a) with respect to the nonextensivity index for q < 1 (superextensivity), which shows the

q regions for damped and growing oscillations with a ¼ 0:4 and (b) with respect to the nonthermality parameter a for q < 1 (superextensivity).
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Also, the influence of the nonthermal parameter on the

damping rate is depicted in Figure 2(b) for certain values of

the nonextensivity parameter q. In Fig. 2(b), it is seen that

the nonthermality parameter affects strongly the behavior of

xi that determines the stable/unstable regions of the

Langmuir oscillations. Furthermore, the corresponding

damping rates are shown in Fig. 3 for different values of q
and a in Fig. 3(b). Figure 3(a) shows that by increasing q, the

amplitude of the damping rate decreases. But, in Fig. 3(b),

the damping rate increases with the increase of a for

qð	 0:65Þ:

2. Subextensive plasmas ðq > 1Þ

We can investigate the Langmuir oscillations in a subex-

tensive EP plasma where a number of low-speed particles

are present. In Fig. 4, the imaginary part of the wave fre-

quency is plotted against q for fixed values of a: One can rec-

ognize that the Langmuir oscillations suffer from damping

only. It is remarked here that our present results agree

exactly with those of Ref. 11. Also, it is seen that both the

nonextensivity and nonthermality characters affect the

damped Langmuir oscillations : In Fig. 5, we have plotted

the damping rate versus the wave number k which reveals

that the Landau damping increases with q increment.

V. SUMMARY AND CONCLUSIONS

In this work, we have investigated the Langmuir waves

in a collisionless and magnetic field free quasineutral plasma

composed of electrons and positrons following the hybrid

nonthermal nonextensive statistics. We have thereby used

the kinetic theory model on Vlasov-Poisson’s equations to

obtain the corresponding dielectric function of the proposed

EP plasma. The dispersion relation and the properties of the

Langmuir waves are discussed in detail, and it is shown that

the phase velocity of the Langmuir waves increases as the

spectral index value decreases. But it increases as the non-

thermal value increases.

Furthermore, it is found that depending on the degree of

nonextensivity of the plasma appeared through q and nonther-

mality presented through a; both the damping and growth

occur in the present EP plasma, arising from a resonance phe-

nomenon between the wave and the plasma particles. In the

case of q < 1 (superextensivity), both the damping and

growing unstable oscillations have been detected, while in

the case of q > 1 (subextensivity), the Langmuir oscillations

suffering from damping only : Moreover (for q < 1), the

Langmuir waves have Landau damping in two q domains

0:335 � q � 0:52 and 0:6 � q � 0:9; because x0s have the

negative imaginary parts for these degrees of nonextensivity

where að	 0:4Þ is kept. The damping rate in the first q region,

FIG. 3. The imaginary part of the frequency (a) with respect to the wave number k for q < 1 (superextensivity) with a ¼ 0:4 and (b) with respect to wave num-

ber k for some values of nonthermality parameter a.

FIG. 4. The imaginary part of the frequency with respect to the nonextensiv-

ity index for q > 1 (subextensivity) for different values of nonthermality

parameter a. For these values of the nonextensivity index q, the Langmuir

waves have the damping but no growth behavior.

FIG. 5. The imaginary part of the frequency with respect to the wave num-

ber k for different values of the nonextensivity index for q > 1

(subextensivity).
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i.e., 0:335 � q � 0:52, is heavy, and the wave disappears

after a few periods. But in the other region, 0:6 � q � 0:9;
the Langmuir oscillations are weakly damped. These are the

normal modes of the plasma which would persist in several

oscillations periods.

The mechanism which leads to the damping is the same

as that developed by Landau,25 arising from a decreasing dis-

tribution function with velocity. The concerned instability

can be associated with the presence of numerous superther-

mal particles (in the case q < 1), which may give energy to

the wave in the resonance process and results in growing

oscillations in time.11 Additionally, the damping rate in the

case q > 1 is smaller than that in the case of q < 1 because

of the difference in the number of the particles participating

in the resonance process with the wave. We emphasize that

in the present work, we have considered a plasma in a non-

equilibrium thermal state by considering the ða; qÞ distribu-

tion for the stationary state of the plasma. Therefore, it is

reasonable that our results should differ from those of a

homogeneous EP plasma. In fact, the properties of the

Langmuir oscillations derived here are suitable for plasmas

in a nonequilibrium stationary state with homogeneous tem-

perature which contain many superthermal or low-speed par-

ticles. This study would be useful for the explanation of

typical modes observed in an EP plasma containing

nonMaxwellian species that obey the nonthermal nonexten-

sive statistics. As mentioned in Ref. 36, the product Cairns-

Tsallis distribution could potentially be applicable to a wider

range of situations involving high-energy nonMaxwellian

tails. The present study is useful in the regions where such

mixed distributions in space or laboratory plasmas exist.35,37
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