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Abstract. The effect of variable dust charge, dust temperature and trapped elec-
trons on small-amplitude dust acoustic waves is investigated. It is found that both
compressive and rarefractive solitons as well as double layers exist depending on
the non-isothermality parameter. A modified Korteweg de Vries (MKdV) equation
is derived. Critical cases, at which the nonlinear coefficient is approximately zero,
are derived. In the vicinity of the critical values, KdV and further MKdV (FMKdV)
equations are obtained. Employing quasipotential analysis, the Sagdeev potential
equation has been derived. Because of the presence of free and trapped electrons,
the plasma acoustic wave exhibits different features of various solitary waves.
The Sagdeev potential equation, at a small amplitude, shows that the ordering
of non-isothermality in the dusty plasma plays a unique role. In the case of a
plasma with first-order non-isothermality, the Sagdeev potential equation shows
the compressive solitary-wave propagation while, for a plasma with higher-order
non-isothermality, the solution of this equation reveals the coexistence of compress-
ive and rarefractive solitary waves. In addition, for certain plasma parameters, the
solitary wave disappears and a double layer is expected. Again, with the better
approximation in the Sagdeev potential equation, more features of solitary waves,
known as spiky and explosive, along with the double layers, are also highlighted.
The findings of this investigation may be useful in understanding laboratory plasma
phenomena and astrophysical situations.

1. Introduction
Plasma coexisting with a finite size of charged dust particles, known as a dusty
plasma, has received much attention in the last few years. The dusty plasma exists
in astrophysical bodies and space environments such as cometary tails, planetary
ring systems, interstellar and circumstellar clouds, asteroid zones [1–7] as well as in
laboratory plasmas, such as in tokamak and low-temperature glow discharges, and
in the fabrication of semiconductors using plasma-aided processes. The ubiquitous
nature of the dusty plasmas has spurred many researchers to study the new features
in the plasma dynamical system. Normally, the low-temperature plasma environ-
ment sustains negatively charged dust formed by the attachment of the electrons to
the dust grains while radiation, photoionization and field emission might yield pos-
itively charged dust grains. If one ignores the dust charge fluctuation dynamics, the
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dusty plasma can be regarded as a multicomponent plasma with several ionic spe-
cies [8, 9]. However, the existence of a solitary acoustic wave in a multicomponent
plasma had been reported by Dwivedi [10], contrasting the observation on a dust
acoustic (DA) wave by Rao et al. [11], where the dust-particle mass provides the
inertia and the pressures of inertialess electrons and ions provide the restoring force.
Relevant observations were also made by other authors mentioned above [8, 9].
The theoretical observations made by Rao et al. [11] encouraged Barkan et al. [12]
to undertake an experimental study in laboratory dusty plasma. Later, Mamun
et al. [13], Ma and Liu [14], Nejoh [15] and Xie et al. [16] have considered the dusty
plasma with the dust-charge fluctuation augmented through Ii+Ie = 0, wherein the
study of plasma acoustic waves reveals the rarefractive soliton features.
If streaming particles are injected in plasmas, we often find that they evolve

towards a coherent trapped-particle state. This has been confirmed by experi-
ments [17]. The onset of electron trapping is also seen in the formation of double
layers [18] and computer simulation [19]. It is well known that the presence of
trapped particles can significantly modify the wave propagation characteristics in
collisionless plasmas [20]. In particular, as discussed in detail elsewhere [21], mode
propagation in the presence of resonant particles for phase speeds near the thermal
range is intrinsically nonlinear.
Although Xie et al. [16] studied the effect of adiabatic variation of dust charges

on DA waves with isothermal electrons and ions and Das and Sarma [22] studied
solitary waves in a dusty plasma with the inclusion of trapped electrons, neither
paper includes the effect of dust temperature and charge fluctuation on DA waves
in the presence of trapped electrons. The motivation of this paper is the study of
the dynamics of various solitary waves in the presence of trapped electrons and
Boltzmann ions that play as a neutrality background to the dusty plasma. The
dynamics of the DA mode might reveal some new features. Based on this, we have
considered an ideal dusty plasma dynamics in space to revisit the soliton features
in an unmagnetized dusty plasma in the present study. In Sec. 2, we present the
relevant equation governing the dynamics of the nonlinear DA waves. In Sec. 3, the
modified Korteweg de Vries (MKdV) equation is derived for DA solitary waves using
perturbation theory. In Sec. 4, two critical cases are discussed and the evolution
equations are derived. Also, the condition under which the double layers can be
formed is obtained. In Sec. 5, we derive the Sagdeev potential and investigate the
existence of different solitary waves and double layers and also its tendency to
produce small-amplitude solitons is investigated. Sec. 6 is devoted to the discussion
and conclusion.

2. Governing equations
The dusty plasma we are going to study consists of three components; extremely
massive and highly negatively charged warm adiabatic dust grains, Boltzmann-
distributed ions together with free and trapped electrons. The charge neutrality at
equilibrium requires

nio = neo + Zdondo, (1)

where neo, nio and ndo are the unperturbed electron, ion and dust number densities,
respectively, and Zdo is the unperturbed number of charges residing on the dust
grain measured in units of the electron charge.
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For one-dimensional low-frequency dust acoustic motions, we have the following
equations for the warm dust fluid:

∂nd
∂t

+
∂(ndud)

∂x
= 0, (2)

∂ud
∂t

+ ud
∂ud
∂x

+
1

mdnd

∂pd
∂x

+
Qd

md

∂φ

∂x
= 0, (3)

where nd, ud, pd and md refer to the number density, the fluid velocity, the fluid
pressure and the mass of the dust grain, respectively. Here, the dust-charge variable
Qd = −eZd, where Zd > 0 is the variable charge number of dust grains in units of
the electron charge −e. The Poisson equation is given by

∂2φ

∂x2
= 4πe(Zdnd + ne − ni), (4)

where the ions are assumed to obey the Boltzmann distribution as

ni = nio exp
(

−eφ

Ti

)
.

In the dynamical system, some of the electrons are attached to the dust grains to
form the charged dust grains, while some of the remaining electrons are bounced
back and forth in the potential well, lose energy continuously and, as a result, be-
come ultimately trapped electrons. In this case, the electron density is defined from
the Vlasov equation consisting of free and trapped electrons. Following Schamel
[20,23,24], the non-isothermality of the plasma is introduced through the electron
densities that have the normalized form

ne(φ) =
∫ ∞

−∞
fe(x, v) dv

= neo


exp(Γ)erfc(

√
Γ) +

1√
βh

×




exp(Γβh)erf(
√

Γβh) for βh � 0,

2√
π

exp
(

Γβh

∫ √
−Γβh

0

exp(X2) dX

)
for βh ≺ 0.




 ,

where Γ = eφ/Te and fe(x, v) and βh represent the electron distribution function
and the ratio of the free to the trapped electron temperatures, Tf/Tt, respectively.
Considering the Maxwellian distribution, the Taylor expansion of the last equation,
for φ � 1, derives the electron density, ne, as a linear combination of free and trapped
electrons as

ne = neo
[
1 + Γ − 4

3b1Γ3/2 + 1
2Γ2 − 8

15b2Γ5/2 + 1
6Γ3 + · · ·

]
.

The cases βh = 1 and βh = 0 correspond to the plasma having the Maxwellian and
the flat-topped distributions, respectively. For an isothermal plasma, one can derive
the electron density by imposing b1 = 0 and b2 = 0 whereas, for the non-isothermal
plasma, we have 0< b1, b2 < 1/

√
π. Thus the non-isothermality of the plasma is

expressed through the electron density, ne, by the following modified form

ne = neo[exp(Γ) − G(Γ)],



72 S. K. El-Labany and W. F. El-Taibany

where G(Γ)=
∑n

k=1[2
(k+1)bk(Γ)(2k+1)/2/

∏
(2k+1)] with the non-isothermal para-

meter defined as bk = (1 − βk
h )/

√
π. Now we normalize all the physical quantities.

We first introduce the effective temperature

Teff =
TiTe

(µTe + νTi)
,

where µ and ν are the normalized ion and electron number densities respectively.
The densities of electrons and ions are normalized by Zdondo and the dust dens-
ity is normalized by ndo. Zd is normalized by Zdo. The space coordinate x, time
t, velocity ud, pressure pd and electrostatic potential φ are normalized by the
Debye length λDd = (Teff/4πZdondoe

2)1/2, the inverse of the dust plasma frequency
ω−1
Pd = (md/4πZ2

dondoe
2)1/2, the dust acoustic speed Cd = (ZdoTeff/md)1/2, ndoKBTd

and Teff/e, respectively. Therefore, we have the following set of basic equations in
non-dimensional form:

∂nd
∂t

+
∂(ndud)

∂x
= 0, (5)

∂ud
∂t

+ ud
∂ud
∂x

+ 3σdnd
∂nd
∂x

− Zd
∂φ

∂x
= 0, (6)

ni = µ exp(−sφ), (7)

ne = ν

[
exp(sβφ)erfc(

√
sβφ) +

1√
βh

exp(βhsβφ)erf(
√

βhsβφ)
]

(8)

The Poisson equation is given as

∂2φ

∂x2
= Zdnd + ne − ni, (9)

where

σd =
Td

ZdoTeff
, β =

Ti
Te

and s =
1

(µ + βν)
.

Obviously, (1) leads to µ − ν = 1.
Now, the dust-charge fluctuation included is determined by the charge current

balance equation [25]:

∂Qd

∂t
+ ud

∂Qd

∂x
= Ie + Ii, (10)

whereQd is the dust-charge variable. The charge currents originating from electrons
and ions reach the grain surface. Thus, the current-balance equation reads

Ieo + Iio ≈ 0. (11)

According to the well-known orbit-motion-limited probe model [1,6,7], we have the
following expressions for electron and ion currents for spherical dust grains with
radius r, normalized by eπr2(8Te/πme)1/2, as

Ie = −ne exp
(

eΦ
Te

)
and Ii = αni

(
1 − eΦ

Ti

)
,

where Φ denotes the dust grain surface potential relative to the plasma potential
φ, α = (β/µi)1/2, and µi = mi/me ≈ 1840. To compare our results with the previous
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ones, we introduce δ =µ/ν and the current-balance equation becomes

[exp(sβ[Ψ + φ] − G(sβφ)[exp(sβΨ)] = αδ(1 − sΨ) exp(−sφ), (12)

where Ψ = eΦ/Teff . Equation (12) is important for determining the dust charges
Qd = CΦ;C is the capacitance of a dust grain, i.e. −eZd = rTeffΨ/e. We have the
normalized dust charges Zd = Ψ/Ψo, where Ψo = Ψ(φ = 0) is the dust surface float-
ing potential with respect to the unperturbed plasma potential at infinite place. Ψo

can be determined from the following transcendental equation:

exp(sβΨo) − αδ(1 − sΨo) = 0. (13)

As can be seen, the dust charge is very sensitive to a small disturbance of φ around
the unperturbed states. This point is very important to explain how the variable
dust charge influences the shape of solitons and solitary waves.

3. Nonlinear dust acoustic (DA) waves
In order to study the dynamics of small-amplitude DA solitary waves in the pres-
ence of variation of dust charges, we derive an evolution equation from the system
of (5)–(9), employing a reductive perturbation technique [26] by introducing the
stretched coordinates [23] ξ = ε1/4(x − λt) and τ = ε3/4t, where ε is a small para-
meter and λ is the solitary-wave velocity, normalized by Cd. The variables nd, ud,
nb, vb, Zd and φ are then expanded as

nd = 1 + εnd1 + ε3/2nd2 + ε2nd3 + ε5/2nd4 + · · ·,

ud = εud1 + ε3/2ud2 + ε2ud3 + ε5/2ud4 + · · ·,

Zd = 1 + εZd1 + ε3/2Zd2 + ε2Zd3 + ε5/2Zd4 + · · ·,

φ = εφ1 + ε3/2φ2 + ε2φ3 + ε5/2φ4 + · · ·.

Substituting these expansions into (5)–(9), using Ψ = ΨoZd in (12) and then collect-
ing terms of different powers of ε, in the lowest order we obtain

nd1 = −φ1R, ud1 = −λφ1R, Zd1 =
−(1 + β)(1 − sΨo)φ1

Ψo(1 + β(1 − sΨo))
= γ1φ1, (14)

where R = (λ2 − 3σd)−1. The linear dispersion relation is given by

γ1 + 1 = R. (15)

From this equation one can get an algebraic equation for λ, whose solution is given
by

λ = [3σd + [γ1 + 1]−1]1/2. (16)

The next order in ε, O(ε3/2), yields a system of equations in the subscripted-2
perturbed quantities. Eliminating these quantities, we get the MKdV equation

∂φ1

∂τ
+ Aφ

1/2
1

∂φ1

∂ξ
+ B

∂3φ1

∂ξ3
= 0, (17)

where

B−1 = 2λR2, A = B

[
2(sβ)3/2b1

(δ − 1)
− 3γ2

2

]
and γ2 =

4
√

sβ3(1 − sΨo)b1

3Ψo(1 + β(1 − sΨo))
.
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To find the stationary solution of (17), we substitute η = ξ − Mτ into (17) and,
integrating twice, using the boundary conditions

φ1(η) → 0,
dφ1(η)

dη
→ 0,

d2φ1(η)
dη2

→ 0 as |η| → ∞, (18)

we get (
dφ1

dη

)2

=
Mφ2

1

B

(
1 − 8A

15M
φ

1/2
1

)
.

The one-soliton solution of (17) is given by

φ1 = φ1msech4[η/w1], (19)

where the amplitude φ1m and the width w1 are given by (15M/8A)2 and 4
√

B/M ,
respectively.

4. Derivation of KdV and further MKdV (FMKdV) equations
The propagation of compressive solitons (that admitted only) depends on the sign
of the nonlinear coefficient, A, of the MKdV equation. We can ensure that the
dispersion coefficient of the MKdV equation, B, is always positive and thus the DA
waves are compressive if A> 0. If A ≈ 0, which corresponds to the so-called critical
density ratio δc, the MKdV equation breaks down and one has to seek another
equation suitable for describing the evolution of the system. When the physical
parameters of the system make A= 0, we use the stretching coordinates [8, 27]
ξ = ε1/2(x − λt), τ = ε3/2t, and follow the procedure used before. We obtain the
same relations as (14) for the lowest order of ε (coefficient of O(ε3/2)) and, to the
order ε2,we get

nd2 = −Rφ2, ud2 = −λRφ2, Zd2 = γ1φ2 + γ2φ
3/2
1 , (20)

[γ1 − R + 1)]φ2 =
[
4(sβ)3/2b1

3(δ − 1)
− γ2

]
φ

3/2
1 . (21)

If we consider the next-order in ε, O(ε5/2), we obtain a system of equations in the
subscripted-3 perturbed quantities. Solving this system with the aid of (12), (14)
and (20), we obtain the following evolution equation

∂φ1

∂τ
+ A

∂φ
1/2
1 φ2

∂ξ
+ B

∂3φ1

∂ξ3
+ Cφ1

∂φ1

∂ξ
= 0, (22)

where

C = B

[
(δ − 1)(δ − β2)

(δ + β)2
+ 3(γ1 − [λ2 + σd]R2)R − 2γ3

]
,

γ3 =
−(δ − 1)(1 + β)2(1 − sΨo)

2Ψo(δ + β)(1 + β(1 − sΨo))2
.

Substituting η = ξ − Mτ in (22) and integrating twice, using the boundary condi-
tions (18), we get, for A= 0,(

dφ1

dη

)2

=
M

B
φ2

1

(
1 − C

3M
φ1

)
.
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The one-soliton solution of (22) is given by

φ1 = φ2msech2[η/w2], (23)

where the amplitude φ2m and the widthw2 are given by 3M/C and 2
√

B/M = 0.5w1,
respectively. Since γ1 � 0, γ3 � 0 and M > 0, (23) clearly indicates that only the
rarefractive soliton waves exist.
On the other hand, when A → 0 but A �= 0, (23) would reduce to

∂φ1

∂τ
+ Dφ

1/2
1

∂φ1

∂ξ
+ B

∂3φ1

∂ξ3
+ Cφ1

∂φ1

∂ξ
= 0, (24)

where we have used Aφ2 → 2Dφ1/3 [28]. Substituting η = ξ − Mτ in (24) and in-
tegrating twice, using the boundary conditions (18), we get

1
2

(
dφ1

dη

)2

=
Mφ2

1

2B

(
1 − 8Dφ

1/2
1

15M
− Cφ1

3M

)
= −V (φ1,M). (25)

Hence

V (φ1,M) =
−Mφ2

1

2B
+

4Dφ
5/2
1

15B
+

Cφ3
1

6B
. (26)

For the formation of a double layer, we must have

V (φm,M) = 0,

(
dV

dφ1

)
φ1=φm

= 0 and
(

d2V

dφ2
1

)
φ1=φm

< 0. (27)

These conditions imply that

φm =
(

4D

5C

)2

and M =
−16D2

75C
. (28)

Substituting for M and D in the relation (26), we obtain

V (φ1) =
Cφ2

1

6B

(
φ

1/2
1 − φ1/2

m

)2
. (29)

From (25) and (29), we get(
dφ1

dη

)2

=
−Cφ2

1

3B

(
φ

1/2
1 − φ1/2

m

)2
.

The double-layer solution is

φ1 =
φm
4

(1 − tanh[η/w])2, (30)

where

w =
5
D

√
−3BC.

Obviously, the formation of the two types of DA double layers (compressive and
rarefractive) depends on the signs of D and C.
Now, if the nonlinear coefficient of the KdV equation vanishes, C ≈ 0, the KdV

equation breaks down also and one has to look for another equation suitable for
describing the evolution of the system. This implies that both of the stretching co-
ordinates used before become invalid and instead of them we use the new stretching
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coordinates ξ = ε3/4(x − λt) and τ = ε9/4t. We obtain the linear relation, (15), for
the lowest order, and for the next order of ε we get the same relations (14) and (20).
Also, we can obtain the third-order perturbed quantities as

nd3 = R
{

−φ3 + E1φ
2
1

}
, ud3 = λR

{
−φ3 + E2φ

3
1

}
,

(31)
Zd3 = γ1φ3 + 3

2γ2φ2φ
1/2
1 + γ3φ

2
1

and

[1 + γ1 − R]φ3 =
[
2(sβ)3/2b1

δ − 1
− 3

2
γ2

]
φ

1/2
1 φ2

+
[
(δ − 1)(δ − β2)

2(δ + β)2
+

3
2
(γ1 + [λ2 + σd]R2)R − γ3

]
φ2

1,

where

E1 = − 1
2γ1 + 3

2 [λ2 + σd]R2 and E2 = E1 − λR2.

If we continue to the next order of ε,O(ε5/2), we get a system of equations in
the subscripted-4 perturbed quantities. Eliminating the perturbed quantities with
subscript 4, we obtain a FMKdV equation

∂φ1

∂τ
+ Fφ

3/2
1

∂φ1

∂ξ
+ B

∂3φ1

∂ξ3
= 0, (32)

where

F/B = 1
6

[
21γ2R − 15γ4 + 8(sβ)5/2νb2

]
,

γ4 =
−4(sβ)3/2(1 − sΨo)

15Ψo(1 + β(1 − sΨo))3
{5b1(1 − β2(1 − sΨo)(β(1 − sΨo) + 2)

+ 2βb2(1 + β(1 − sΨo))2}
and

Zd4 = γ1φ4 + 3
8γ2

(
φ2

2φ
−1/2
1 + 4φ

1/2
1 φ3

)
+ 2γ3φ1φ2 + γ4φ

5/2
1 .

Substituting η = ξ − Mτ in (32) and integrating twice, using the boundary condi-
tions (18), we get (

dφ1

dη

)2

=
Mφ2

1

B

(
1 − 8F

35M
φ

3/2
1

)
.

The one-soliton solution of (32) is given by

φ1 = φ3msech4/3[η/w3], (33)

where the amplitude φ3m and the width w3 are given by (35M/8F )2/3 and (4/3)√
B/M = w1/3, respectively.

5. Quasipotential analysis and large amplitude solitary waves
Now we turn our attention to investigate the properties of large-amplitude DA sol-
itary waves. We assume that all variables in (5)–(9) depend only on a single variable
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ζ =x − Mt, where ζ is normalized by λDd andM is the Mach number (solitary-wave
velocity divided by Cd). In this stationary frame and using Ψ = ΨoZd, (5) and (6)
can be integrated to give the following expression for dust number density

nd =
1√

1 + 2(Vd(φ)/(M2 − 3σd))
, (34)

where we have imposed the appropriate boundary conditions for localized disturb-
ances, viz. φ −→ 0, nd −→ 1, ud −→ 0, neo −→ ν, ni −→ µ as ζ −→ ±∞, and

Vd(φ) =
∫ φ

0

Zd dφ =
1

Ψo

∫ φ

0

Ψ(φ) dφ. (35)

Substituting for the normalized number densities of ion and electrons, the dust
charge number expression Zd = Ψ/Ψo and the dust number density, (34), into the
Poisson equation (7) and integrating it, imposing the boundary conditions for
localized solutions, namely φ −→ 0 and dφ/dζ −→ 0 as ζ −→ ± ∞, we get

1
2

(
dφ

dζ

)2

+ V (φ) = 0, (36)

where the Sagdeev quasipotential reads

V (φ) =
1

βs(δ − 1)

[
1 − exp(βsφ)erfc(

√
βsφ) − 1√

β3
h

exp(βhβsφ)erf(
√

βhβsφ)

+2

√
βsφ

π

(
1
βh

− 1
)]

+ {1 −
√

1 + 2(Vd(φ)/(M2 − 3σd))}(M2 − 3σd)

+
δ

s(δ − 1)
(1 − exp(−sφ)). (37)

In order to have solitary-wave solutions, the quasipotential must satisfy the
following conditions. (i) V (φ) → 0, dV (φ)/dφ → 0 and d2V (φ)/dφ2 < 0 at φ = 0; i.e.
the fixed point at the origin is unstable; (ii) there exists a non-zero φm, the maximum
(or minimum) value of φ, at which V (φm) � 0 and (iii) V (φ)< 0 when φ lies between
0 and φm. From (37), condition (i) leads to

M > Ml =
√

1
γ1 + 1

+ 3σd. (38)

This fixes the lower limit of M , which is equivalent to the value of λ obtained in
Sec. 3. The upper limit of M for which negative solitary waves exist can be found
from the condition V (φ1min) = 0, where φ1min is the minimum value of φ for which
the dust density nd is real, i.e. Vd(φ1min)= −(M2 − 3σd)/2, e.g. Vd0(φ1min)≡φ1min =
−(M2 − 3σd)/2 in the case of constant dust charge.
The critical upper limit of Mach number Mcr for which positive plasma poten-

tial solitary waves exist can be found from the condition V (φ1max) = 0, where
φ1max is the maximum value of φ; meanwhile V (φ) is tangent to the φ-axis for
which dV (φ1max)/dφ = 0, i.e. φ1max andMcr should be determined by the following
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relations:

1
βs(δ − 1)

[
1 − exp(βsφ)erfc(

√
βsφ) − 1√

β3
h

exp(βhβsφ)erf(
√

βhβsφ)

+ 2

√
βsφ

π

(
1
βh

− 1
)]

+
δ

s(δ − 1)
(1 − exp(−sφ))

+
{
1 −

√
1 + 2(Vd(φ)/(M2 − 3σd))

}
(M2 − 3σd) = 0

and

δ

(δ − 1)
exp(−sφ) − 1

(δ − 1)

[
exp(βsφ)erfc(

√
βsφ)+

1√
βh

exp(βhβsφ)erf(
√

βhβsφ)
]

+
Zd√

1 + 2(Vd(φ)/(M2 − 3σd))
= 0.

The coupled transcendental equations can be solved numerically for the largest
positive potential amplitude and upper Mach number where the positive plasma
potential solitary waves should exist.
The quasipotential can be obtained from (37), where Vd(φ) is obtained numeric-

ally from (35).
If we expand the expression for the quasipotential around φ = 0, for small amp-

litudes we will recover all the results of the small-amplitude DA soliton obtained
by the reduced perturbation technique in Sec. 4. For example, for small φ, we can
write to the order of O(φ5/2)

Vd(φ) = φ +
γ1

2
φ2 +

2γ2

5
φ5/2.

Substituting for Vd(φ) and the dimensionless number density of dust, electrons and
ions in (37) we have

V (φ) =
1
2

{(M2 − 3σd)−1 − 1 − γ1}φ2 +
2
5

[
4(sβ)3/2b1

3(δ − 1)
− γ2

]
φ5/2.

Equation (36) with (34) can be rewritten as(
dφ

dζ

)2

= a1φ
2 − a2φ

5/2, (39)

where a1 = M/B and a2 = 8A/15B. Equation (39) has the soliton solution as in
(19). For slightly larger values of φ, the Sagdeev potential can be given as

V (φ) =
1
2

{(M2 − 3σd)−1 − 1 − γ1}φ2 +
2
5

[
4(sβ)3/2b1

3(δ − 1)
− γ2

]
φ5/2

+φ3

(
(δ − 1)(δ − β2)

6(δ + β)2
+

1
2
γ1(M2 − 3σd)−1 − 1

3
γ3 − 1

2
(M2 − 3σd)−2

)

and we can write (36) as (
dφ

dζ

)2

= a1φ
2 − a2φ

5/2 − a3φ
3, (40)
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Figure 1. Zd against plasma potential disturbance φ for different βh values with δ =10 and
β =0.5.

where a3 =C/3B. Equation (40) has a shock-like wave solution as in (30). For a2 = 0,
we have a soliton solution like (23). Other types of solitons, viz. spiky-type solitary
waves, collapsible waves, etc., can be obtained by taking higher-order terms and
using the so-called ‘tanh’ method [29] or the modified extended tanh method [30].
Since the expression for V (φ) derived in (37) is exact, one can expand it up to
any desirable power of φ and then can obtain all different types of solitary waves
depending on the non-isothermal parameter, dust temperature and the charge-
variation effect obtained by perturbation theory. If we expand Zd to higher powers
of φ as

Zd = 1 + γ1φ + γ2φ
3/2 + γ3φ

2 + γ4φ
5/2,

the Sagdeev potential can be given as

V (φ) =
1
2

{(M2 − 3σd)−1 − 1 − γ1}φ2 +
2
5

[
4(sβ)3/2b1

3(δ − 1)
− γ2

]
φ5/2

+φ3

(
(δ − 1)(δ − β2)

6(δ + β)2
+

1
2
γ1(M2 − 3σd)−1 − 1

3
γ3 − 1

2
(M2 − 3σd)−2

)

+φ7/2

[
2
5
γ2(M2 − 3σd)−1 − 2

7
γ4 +

16(sβ)5/2b2

105(δ − 1)

]
.

In this case, (36) becomes(
dφ

dζ

)2

= a1φ
2 − a2φ

5/2 − a3φ
3 − a4φ

7/2, (41)

where a4 = 8F/35B. If a2 = a3 = 0, then we have a soliton solution like (33). Other-
wise, we can reform (41), using φ = θ2, as(

dθ

dζ

)2

= aθ2(φ − θ)3, (42)
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Figure 2. Zd against δ for different β values with φ=2 and βh =0.9.
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Figure 3. The variation of phase velocity λ against system parameter variations.

where φ = −a3/3a4, a= a4/4 and a2
3 = 3a2a4. Equation (42) can be solved for the

soliton profile and the solution can be obtained as an implicit function of η in the
following form

φ(ζ) = φ 2


1 − tanh2


( φ

φ −
√

φ(ζ)

)1/2

−
√

aφ3
ζ

2






2

. (43)

Note that φ(ζ) occurs on both the left- and right-hand sides of (43). The solution
of (43) gives a profile of a spiky solitary wave defined in the region 0 < φ(ζ) <

√
φ

while, for the region defined as φ < 0, the soliton solution can be obtained in a
similar manner and it has an explosive solitary-wave profile in the plasma acoustic
dynamics. Thus one can proceed by taking the nonlinear term to any power of
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Figure 4. φ1m is plotted against βh for δ =20, β =1 and σd =0.005.
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Figure 5. φ1m is plotted against σd for δ =20, β =1 and βh =0.7.

φ and then can investigate different natures of the solitary waves under different
approximations.

6. Discussion and conclusion
In this paper, by employing the reductive perturbation technique, we have studied
the effects of adiabatic variation of charges, dust temperature and trapped electrons
on DA solitary waves in an unmagnetized dusty plasma. The current neutrality
from ions and electrons on the dust grains causes an adiabatic variation of dust
charges, which modifies the shape of the DA solitary waves. We have derived the
MKdV (17) and the admitted compressive DA solitary waves has been obtained.
At some critical phase velocities, the MKdV equation fails to describe the system.
This forced us to apply a new stretching and we obtained a KdV equation, (22),
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Figure 6. φ1m is plotted against β for δ =30, βh = −0.7 and σd =0.001.
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Figure 7. φ1m is plotted against δ for σd =0.001, β =1 and βh = −0.7.

that admits a rarefractive soliton only. On the other hand, there exist some critical
points that make the nonlinear coefficients of the KdV and MKdV equations nearly
zero, and thus they also fail to describe the system and we replaced the previous two
stretching variables with a newer one. Applying this stretching leads to a FMKdV
equation, (32), that covers and solves this problem and allows only a compressive
soliton. Also, we derive the condition under which double layers with two different
types can exist. Thus, DA solitons exist in the region where DA double layers do
not exist. The dependence of amplitude, width, velocity and dust charge on system
parameter variations is investigated in the following figures.
Figures 1 and 2 illustrate the dependence of Zd on the system parameter vari-

ations. They show that, for a positive plasma potential φwith an increasing disturb-
ance strength, Zd increases first quickly with a large slope, then gradually slows
down with a smaller slope and finally reaches a constant value. As βh increases from
its negative value to a positive one, Zd increases. Also, as β increases, Zd increases.
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Figure 8. φ2m is plotted against δ for σd =0.001 and different β values.
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Figure 9. φ2m is plotted against σd for δ =25 and β =1.

On the other hand, Zd has a nearly fixed value for a variation in δ, except near the
maximum admitted δ, which we call δmax, where it increases rapidly.
Figure 3 shows the variation of λ with δ. It shows that λ decreases as δ or β

increases. On the contrary, λ increases as σd increases.
The variation of φ1m with physical parameters is shown in Figs 4–7, from which

we conclude that:

• φ1mdecreases as σd or βh increases. On the contrary, it increases as β increases.
• For small δ, φ1m increases rapidly as δ increases and then, for moderate or

higher values of δ, φ1m decreases as δ increases.

Figures 8 and 9 show the variation of the rarefractive soliton solution versus
various system parameter variations. They show that the amplitude φ2m decreases
rapidly as σd increases and then it behaves like the exponential decay function.
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Figure 10. φ3m is plotted against βh for δ =20, β =1 and σd =0.001.
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Figure 11. φ3m is plotted against σd for δ =20, β =1 and βh =0.7.

On the other hand, φ2m decreases slowly as δ increases; however, nearest to δmax,
it increases rapidly (note the similar profiles while changing β and compare them
with the Zd profile). Figure 8 shows also that as β increases φ2m decreases.
After precise investigation, we can see a remarkable similarity of the curves.

This should not be surprising if we recognize the fact that it is an indication of an
approximate similarity law of the system. From the expressions (12) and (13) we find
that the system parameter γ =αδ = (nio/neo)

√
(Time/Temi), which determines the

approximate similarity law of the system, is very important. If we perform a scale
transform β

′
= �β, δ

′
= δ/

√
� such that α

′
=

√
�α and α

′
δ

′
= αδ are kept constant,

the solutions Ψ
′
and Ψ

′
o are almost equivalent to the original Ψ and Ψo. However,

since the parameters β, βh and s can still modify the quantities of the Mach number
and the peak amplitude φ1m and Zd1, this similarity is in a rough sense as shown
in Fig. 8.
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Figure 12. φ3m is plotted against δ for σd =0.001 and βh = −0.7 and different β values.
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Figure 13. The variation of the upper limit of the Mach number with βh for two different
values of δ with β =0.5 and σd =0.05.

Figures 10, 11 and 12 show that φ3m decreases as βh or σd increases but in a
different manner. φ3m increases as δ or β increases. It increases rapidly as it becomes
closest to δmax.
Figures 13 and 14 illustrate the dependence of the upper limit of the Mach number

on the variation of the system parameters. One can observe that Mcr changes
drastically with any βh variation. Mcr decreases as δ increases, but it increases
as β or σd increases.
On the other hand, Sagdeev’s quasipotential approach is extremely suitable for

studying large-amplitude solitary waves in plasma. One can derive all the one-
soliton results of perturbation methods and can compare them with the exact
results obtained by the quasipotential (also called the pseudopotential) method.
The pseudopotential is derived for the preceding system. A mechanism was found
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Figure 14. The variation of the upper limit of the Mach number corresponding to
variations in σd and β with δ =10 and βh =0.5.

by which one can obtain a power series in φ for the pseudopotential. It was found
that different ordering gives rise to different types of solitons. In the case of higher-
order nonlinearity both explosive solitary waves, where the energy in the soliton
is conserved, and the collapse of the soliton, where the energy is not conserved in
the wave profile, were found. Moreover, as the exact Sagdeev potential is obtained,
one can expand it up to any desired power of φ. The modification in the amplitude
and the width of the solitary-wave structures due to the inclusion of the effects
of reflected electrons, dust temperature and charge fluctuation is investigated. It
has been shown that the non-isothermality plays an important role in the Sagdeev
potential to yield the various solitary waves. This investigation would be effective
for understanding the properties of grain charging and the dynamics of DA waves
in the presence of trapped electrons.
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