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Dust acoustic solitary waves and double layers in a dusty plasma
with an arbitrary streaming ion beam

S. K. El-Labany and W. F. El-Taibany
Department of Physics, Faculty of Science-Damietta, Damietta El-Gedida, Egypt

~Received 4 December 2002; accepted 6 January 2003!

The effects of variable dust charge, dust temperature and an arbitrary streaming ion beam on small
amplitude dust acoustic waves are investigated. It is found that both compressive and rarefactive
solitons as well as double layers exist. There exists a critical ion beam velocity below which the ion
beam is unable to generate solitons. Korteweg–de Vries~KdV! equations with third and fourth-order
nonlinearity at the critical values are derived and the properties of dust acoustic solitary waves are
discussed. In the vicinity of the critical values, KdV-type with mixed nonlinearity is obtained. The
quite dense positive ion, the dust temperature, the ion beam density, mass ratio and temperature
govern the existence of dust acoustic waves. The findings of this investigation may be useful in
understanding laboratory plasma phenomena and astrophysical situations. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1557912#
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I. INTRODUCTION

There has been a rapidly growing interest in physics
dusty plasmas not only because of dust being an omnipre
ingredient of our universe, but also because of its vital role
understanding different collective processes~mode modifica-
tion, new eigenmodes, coherent structures, etc.! in astro-
physical and space environments.1–6 The consideration of
charged dust grains in a plasma does not only modify
existing plasma wave spectra,7,8 but also introduces a num
ber of new novel eigenmodes, such as dust acoustic~DA!
waves,9,10 dust ion acoustic~DIA ! waves,11,12 dust lattice
waves,13,14 etc.

Using a reductive perturbation theory, Xieet al.15 de-
rived small amplitude DA solitons with varying dust charg
and they have shown that only rarefactive solitary wa
exist when the Mach number lies within an appropriate
gime depending on the system parameters. Also, the DA s
tary waves and double layers in dusty plasma with varia
dust charge and two-temperature ions were studied by
et al.16 They have shown that both compressive and rare
tive solitons as well as double layers exist. Also, the am
tudes of the dust solitary waves become smaller and the
gime of Mach number is extended wider for the variable d
charge situation with the case of constant dust charge. On
other hand, the ion beams in laboratory dusty plasmas h
become indispensable in the field of materials process
such as etching, chemical vapor deposition and surf
modification.17 Such circumstances in plasma applicatio
and the ease of realizing dusty plasmas on a laboratory s
have accelerated active studies on dust phenomena in
mas. The topics of nonlinear grain charge variation and e
trostatic ion waves18,19 have been reported by regarding du
grains as point charges, where the Debye length is m
larger than the inter-grain distance. The nonlinear dynam
of the dust charge and large amplitude DA waves in a plas
with an ion beam were studied by Nejoh.20 He treated the
beam ions as thermal without the inclusion of the parti
9891070-664X/2003/10(4)/989/10/$20.00
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streaming in his calculation of the beam current at the d
grain surface. Also he considered the beam fluid as isot
mally distributed ones. In this paper, we focus our attent
on the characteristics and behavior of the small amplitu
electrostatic dust acoustic waves in an unmagnetized d
plasma with an arbitrary streaming positive ion beam.

The manuscript is organized as follows. The basic eq
tions describing the dusty plasma system under consi
ation, incorporating the contribution from the variable du
charge is given in Sec. II. In Sec. III, using current balan
condition, the dependence of the dust charge on the pla
parameters, especially the relation of the dust charge va
tion to the plasma potential is obtained. In Sec. IV, using
reductive perturbation technique, the small amplitude D
solitary structures are studied with the inclusion of numb
of important effects as adiabatic dust fluid temperature, a
batic variation of dust grain charges and ion beam. In Sec
two critical cases for the system are discussed and the m
fied Korteweg–de Vries~MKdV ! and Korteweg–de Vries
type ~KdV type! equations with third, fourth-order, an
mixed nonlinearity are obtained. Their solutions are also d
cussed. Section VI is devoted to the discussion and con
sion.

II. BASIC EQUATIONS

The dusty plasma we are studying, consists of four co
ponents; extremely massive, highly negatively charged d
grains, electrons, ions and positive ion beam. Charge neu
ity at equilibrium reads

nio1nbo5neo1Zdondo , ~1!

wherenio , nbo , neo , andndo are the unperturbed ion, beam
electron, and dust number densities, respectively, andZdo is
the unperturbed number of charges residing on the dust g
measured in the unit of electron charge.

For one-dimensional low-frequency DA motions, w
have the following nondimensional equations for the i
beam and warm dust fluids:16
© 2003 American Institute of Physics
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]nd

]t
1

]~ndud!

]x
50, ~2!

]ud

]t
1ud

]ud

]x
13sdnd

]nd

]x
2Zd

]f

]x
50, ~3!

]nb

]t
1

]~nbvb!

]x
50, ~4!

]vb

]t
1vb

]vb

]x
13mbdsbnb

]nb

]x
1mbd

]f

]x
50, ~5!

]2f

]x2
5Zdnd1ne2ni2nb , ~6!

wherend andud refer to the number density and fluid velo
ity of the dust grain, respectively, andnb and vb are the
corresponding beam parameters, respectively. All dens
are normalized byndoZdo . The space coordinatex, time t,
velocities and electrostatic potentialf are normalized by the
Debye lengthlDd5(Teff/4pZdondoe

2)1/2, the inverse dust
plasma frequencyvpd

215(md/4pZdo
2 ndoe

2)1/2, the DA speed
Cd5(ZdoTeff /md)1/2 and Teff /e, respectively. The dimen
sionless number densities of electrons and ions are expre
as

ne5
neo

Zdondo
exp~b1sf!,

ni5
nio

Zdondo
exp~2sf!.

Also, we introduce the following notations:

sd5
Td

ZdoTeff
, sb5

Tb

Teff
5

1

sbb
, mbd5

md

mbZdo
,

d15nio /neo , d25nbo /neo , b15
Ti

Te
, bb5

Ti

Tb
,

s5
Teff

Ti
5S d11d221

d11d2bb1b1
D ,

with temperatureTe for electrons, temperatureTi for ions
and temperatureTb for beam in unit of energy, respectivel
(md /mb) are the mass of~dust/beam! particles, respectively

III. CHARGING OF DUST GRAINS

Dust particles are charged due to a variety of proces
including the bombardment of the dust grain surface
background plasma electrons, ions and incident ion bea
photoelectron emission by ultraviolet~UV! radiation, ion
sputtering, secondary electron production, etc. In lo
temperature laboratory plasmas, dust particles are ma
negatively charged when any plasma electrons hitting
surface of the dust grains are attached to it and simply
from the background plasma.1 In general, the dust charg
variable Qd is determined by the charge current balan
equation21
es

sed

es
y
s,

-
ly
e
st

e

]Qd

]t
1ud

]Qd

]x
5I e1I i1I b .

We notice that the characteristic time for dust motion is
order of tens of milliseconds for micrometersized grains10

while the dust charging time is typically of order of 1028 s.
Therefore, on the hydrodynamic time scale, the dust cha
can quickly reach local equilibrium, at which the curren
from the electrons, beam and ions to the dust are balan
The current balance equation reads4,21

I eo1I io1I bo'0.

According to the well-known orbit-motion-limited prob
model,22 we have the following expressions for the electr
and ion currents for spherical dust grains with radiusr:

I e52epr 2~8Te /pme!
1/2ne expS eF

Te
D

and

I i5epr 2~8Ti /pmi !
1/2ni S 12

eF

Ti
D .

For ion beam that have an arbitrary streaming velocityvo ,
we can express the ion beam current at grain surface1,4,23 as

I b5epr 2~8Tb /pmb!1/2nbFF1~uo!2F2~uo!
eF

Tb
G ,

whereF denotes the dust grain surface potential relative
the plasma potentialf and

F1~uo5vo /A2vbth!

5
Ap

4uo
~112uo

2!erf~uo!10.5 exp~2uo
2!,

F2~uo!5
Ap

2uo
erf~uo!, vbth5ATb

mb
.

If uo50, we can getF15F251 which tends to the case o
nonstreaming beam that considered by Nejoh.20 From the
current balance equation, we have

a1d1~12sC!exp(2sf)1a2nb~d11d221!(F12F2sbbC)

5exp~sb1@C1f#!, ~7!

where C5eF/Teff and a15(b1 /m i)
1/2, a2

5(b2 /mb)1/2, b25b1 /bb , m i ,b5mi ,b /me .
Equation ~7! is important for determining the dus

charges due to the relationQd5C̆F, whereC̆ is the capaci-
tance of dust grain. We have the normalized dust char
Zd5C/Co , whereCo5C (f50) is the dust surface float
ing potential with respect to the unperturbed plasma poten
at infinite place.Co can be determined from the followin
transcendental equation:

a1d1~12sCo!1a2d2~F12sbbF2Co!5exp~sb1Co!.
~8!

As can be seen, the dust charge is very sensitive to the s
disturbance off around the unperturbed states. This point
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very important for explanation how the variable dust cha
influences the shape of solitons and solitary waves.

IV. DUST ACOUSTIC SOLITONS

In order to study the dynamics of small amplitude D
solitary waves in the presence of adiabatic variation of d
charges, we derive an evolution equation from Eqs.~2!–~6!
by employing a reductive perturbation technique and
stretched coordinates24 j5«1/2(x2lt), andt5«3/2t, where
« is a small parameter andl is the solitary wave velocity
normalized byCd . The variablesnd , ud , nb , vb , Zd , and
f are then expanded as

nd511«nd11«2nd21«3nd31•••,

nb5n1«nb11«2nb21«3nb31•••,

ud5«ud11«2ud21«3ud31•••,

vb5vo1«vb11«2vb21«3vb31•••,

Zd511«Zd11«2Zd21«3Zd31•••,

f5«f11«2f21«3f31•••.

Substituting these expansions into Eqs.~2!–~6!, and using
C5CoZd in Eq. ~7!, then collecting terms of different pow
ers of«, in the lowest order we obtain

nb15mbdnR1f1 , vb15l̃mbdR1f1 , Zd15g1f1 ,

nd152f1R2 , ud152lf1R2 ; l̃5l2vo ~9!

where R15(l̃223L)21, R25(l223sd)21; L5sbmbdn
2

and the parameterg1 is derived in the Appendix.
The linear dispersion relation is given by

g11
s~b11d1!

~d11d221!
5nmbdR11R2 , ~10!

from which one can get a fourth-order algebraic equation
l. If all the roots are real, each root would indicate a p
sible solitary wave. It is well-known thatvo50 gives the
stability of the waves that can be easily studied. However
order to get the proper DA solitary waves with an ion bea
we have chosen the initial velocity of the ion beam, functio
ally depending on the system parameters in such a way
instability of the waves does not play a significant part.

The second order in« yields a system of equations in th
second-order perturbed quantities. Eliminating the seco
order perturbed quantities, we get the standard KdV equa

]f1

]t
1Af1

]f1

]j
1B

]3f1

]j3
50, ~11!

where

B2152~lR2
22C1l̃nmbdR1

2!,

A/B5s2S 2b1
21d1

d11d221D 1R2~3g123~l21sd!R2
2!

22g213mbd
2 R1

3n~l̃21L! ,
e

st

e

n
-

n
,
-
at

d-
n

and C5@a2d2l̃mbdR1
2(F12sbbF2Co)/sgaCo# and g2 is

derived in the Appendix. To find the stationary solution
Eq. ~11!, we substituteh5j2Mt into Eq.~11! and integrate
twice, using the boundary conditions

f1~h!→0,
df1~h!

dh
→0,

d2f1~h!

dh2
→0 as uhu→`,

~12!

to get

S df1

dh D 2

5
Mf1

2

B S 12
A

3M
f1D .

The one-soliton solution of~11! is given by

f15f1m Sech2@hw1#, ~13!

where f1m53M /A is the amplitude andw1
2152AB/M is

the width. If for a given value of ion beam velocity,B is
negative, the width of the soliton becomes imaginary a
hence the ion beam will be unstable to excite DA waves
our system. Therefore, the condition for generation of D
waves is that the ion beam velocity must satisfy

l̃nmbdR1
21lR2

2.C. ~14!

Thus there is an ion beam velocity below which the ion be
does not generate DA soliton. The corresponding velocity
a function of beam–dust concentration, the initial surfa
potential, the dust temperature and beam temperature.

V. CRITICAL CASES

The propagation of compressive and rarefactive solit
depends on the sign of the nonlinear coefficient,A, of the
KdV equation. If we assume that the dispersion coefficien
the KdV equations,B, is positive, thus the DA waves ar
~compressive/rarefactive! if ( A.0/A,0). When the phase
velocity l reaches the so-calledlc ; critical phase velocity,
the nonlinear coefficient of the KdV equation vanishesA
50, and therefore, KdV equation breaks down and one
to seek for another equation suitable for describing the e
lution of the system. This implies that the stretching coor
nates mentioned above are not valid for this critical case
we use new stretching coordinates for obtaining the evo
tion equation describing the system.

When the plasma system parameters makeA50, we use
the stretching coordinates25 j5«(x2lt),t5«3t, and ex-
pand the dependent variables in the same manner as be
Substituting them into Eqs.~2!–~6!, and usingC5CoZd in
Eq. ~7!, then collecting terms in different powers of«, we
obtain the same relations as~9! for the lowest order of«
~coefficient of«2), and to the order of«3, we get

nb25mbdnR1$f21G1@f1
2/2#%,

nd252R2$f22J1@f1
2/2#%,

vb25l̃mbdR1$f21h1@f1
2/2#%,

ud252lR2$f22K1@f1
2/2#%,

Zd25g1f21g2f1
2 , ~15!
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where

G153mbd@ l̃21L#R1
2 , H15mbdR1

2@ l̃219L#,

J152g113@l21sd#R2
2 , K152g11@l219sd#R2

2 .

If we consider the next-order in«, we obtain a system o
equations in the third-order perturbed quantities. Solving
system with the aid of Eqs.~9! and~15!, we finally obtain the
MKdV equation

]f1

]t
1A

]f1f2

]j
1B

]3f1

]j3
1F

]f
1
3

]j
50, ~16!

where

F/B5
2s3

6 S b1
31d1

d11d221D 1
1

6
~8g213g1

2!R22g3

23~l21sd!R2
3g11

1

2
~30l2sd15l419sd

2!R2
5

1
1

2
~30l̃2L15l̃419L2!nmbd

3 R1
5 ,

where g3 is derived in the Appendix. Substitutingh5j
2Mt in Eq. ~16! and integrating twice, using the bounda
conditions;~11!, we get forA50

S df1

dh D 2

5
M

B
f1

2S 12
F

2M
f1

2D .

The one-soliton solution of Eq.~16! is given by

f15f2m Sech@hw2#, ~17!

where the amplitudef2m56A2M /F, and the widthw2
21

5AB/M50.5w1
21. Obviously, the physically reasonab

solitons, correspond to the conditionF.0, and in this case
both compressive and rarefactive solitons are also allowe
coexist.

On the other hand, whenA→0 but AÞ0, Eq. ~16!
would reduce to

]f1

]t
1Df1

]f1

]j
1B

]3f1

]j3
1F

]f
1
3

]j
50, ~18!

where we have usedAf2→Df1/2.16,25,26 Substituting h
5j2Mt in Eq. ~16! and integrating twice, using the bound
ary conditions;~11!, we get

1

2 S df1

dh D 2

5
Mf1

2

2B S 12
D

3M
f12

F

2M
f1

2D52V~f1 ,M !.

~19!

Hence

V~f1 ,M !5
2Mf1

2

2B
1

D

6B
f1

31
F

4B
f1

4 . ~20!

For the formation of double layer, we must have

V~fm ,M !50, S dV

df1
D

f15fm

50 and S d2V

df1
2D

f15fm

,0.

~21!
is

to

The conditions~21! ensure that the particle will remain a
rest atf15fm and no reflection will occur. These condition
imply

f1m5
2D

3F
and M5

2D2

18F
. ~22!

Substituting forM andD into the relation~20!, we obtain

V~f1!5
f1

2F

4B
~f12fm!2. ~23!

From Eqs.~19! and ~23!, we get

S df1

dh D 2

5
2f1

2F

2B
~f12fm!2.

Then, the double layer solution is

f15
fm

2
~12Tanh@hw# !, ~24!

where

w215
2A22BF

D
.

Obviously this double layer solution exists only when t
system parameters make the conditionF,0 is fulfilled. Here
we get the two types of DA double layers depending on
sign of D.

FIG. 1. Shows the variation of phase velocityl; ~a! vs d2 andd1, where
b150.4, bb50.2, vo50.1, ~b! vs b1 andbb , whered255, mbd525, v0

50.1.
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FIG. 2. Shows the existence of the ra
efactive and compressive solitons o
the KdV equation and its variation cor
responding to the system paramet
variation attached with each graph, th
used brackets are in the form
(d1 ,d2 ,b1 ,bb ,mbd ,v0).
n
so
ri
he
i

ri

-

r

Now, if the nonlinear coefficient of the MKdV equatio
vanishes,F50, therefore, MKdV equation breaks down al
and one has to look for another equation suitable for desc
ing the evolution of the system. This implies that both t
stretching coordinates used before become invalid and
stead of them we use the new stretching coordinates25 j
5«3/2(x2lt),t5«9/2t, and expand those dependent va
ables as before. Substituting them into Eqs.~2!–~6!, and us-
ing C5CoZd in Eq. ~7!, then collecting the terms of differ
ent powers of«, we obtain the linear relation, Eq.~9! for the
lowest order, and for the next order of« we get the same
relations as Eq.~15!. Also, we can obtain the third-orde
perturbed quantities as

nb35mbdnR1$f31G1f1f21G2f1
3%, ~25!

vb35mbdl̃R1$f31H1f1f21H2f1
3%, ~26!
b-

n-

-

nd35R2$2f31J1f1f21J2f1
3%, ~27!

ud35lR2$2f31K1f1f21K2f1
3%, ~28!

Zd35g1f312g2f1f21g3f1
3 , ~29!

where

G25~30l̃2L15l̃419L2!S mbd
2

2 DR1
4 ,

H25
1

2
~30l̃2L1l̃4145L2!mbd

2 R1
4 ,

J25
3

2
g1@l21sd#R2

22
1

3
g2

2
1

2
~30l2sd15l419sd

2!R2
4 ,
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K25
1

2
g1@l219sd#R2

22
1

3
g2

2
1

2
~30l2sd1l4145sd

2!R2
4 ,

andg3 is derived in the Appendix. If we continue to the ne
order of«, we get a system of equations in the fourth-ord
perturbed quantities. Solving that system yields to a n
type of KdV equation, that can be called KdV type

]f1

]t
1H

]f1
4

]j
1B

]3f1

]j3
50, ~30!

where

H/B5
s4

24 S b1
42d1

d11d221D 1g41R2F25

4
g31J2g1

1
g2

2
$5~l21sd!R2

22g1%1
3

8
g1

2~l21sd!R2
2

2
3g1

4
~30l2sd15l419sd

2!R2
4G

FIG. 3. Shows the variation of the width of both the rarefactive and co
pressive solitons~a! vs d2 , d1 and l, whereb150.4, bb50.2, mbd525,
v050.1 and~b! vs b1 , bb , and l, whered1520, d255, mbd525, v0

50.1.
r
w

1
5

8
R2

6~7l61105l4sd1189l2sd
2127sd

3!]

2
5

8
R1

7mbd
3 @~7l̃61105l̃4L1189l̃2L2127L3!#,

where g4 is derived in the Appendix. Substitutingh5j
2Mt in Eq. ~30! and integrating twice, using the bounda
conditions; we get

S df1

dh D 2

5
M

B
f1

2S 12
H

5M
f1

3D .

The one-soliton solution of~30! is given by

f15f3m Sech2/3@hw3#, ~31!

where the amplitude and the width are given byf3m

5(5M /2H)1/3 andw3
215 2

3AB/M5w1
21/3, respectively.

VI. DISCUSSION AND CONCLUSION

In this system, the orderingmd@mi@me holds, as ob-
tained in laboratory plasmas. Typical laboratory plasma f
quencies are 102 Hz: 10526 Hz: 109210 Hz, and have
roughly the same ordering as the mass ratios. Thus, the
clusion of the mass ratios is equal to considering the col
tive motion of dust grain particles17,19,20when we define the
velocities of the electrons, positive ions, and dust grains
equilibrium asveo , v io , and vdeo, and assume thatveth

@vph@v io ,vo@vdth whereveth (vdth) andvph are the elec-
tron ~dust! thermal velocity and phase velocity of the du
acoustic waves, respectively. The dust thermal velocity,
general, is much less than the wave phase velocity bec
of the massive dust grains. The ion-beam velocityvo is as-
sumed to be less than the phase velocityvph

.(ZdoTe /md)1/2. Since the dust acoustic instability i
brought about by the condition27–30vo.vph , the dust acous-
tic instability does not occur in our system. It is also assum
that the ion-beam velocity is less than the beam thermal
locity. It is noted that, in the case wheremd51.6
310221 kg, Zdo5103, Te51 eV, Ti50.4 eV, the dust
thermal velocity isvdth51.45 m/s, the DA velocity,Cd

5(ZdoTeff /md)1/2.280 m/s and the wave phase veloci
vph.(ZdoTe /md)1/25300 m/s. If we assume K1 ions as the
ion-beam component, the beam thermal velocity isvbth

.2.23103 m/s. When the beam velocity is 28 m/s, we o
tain vo50.1 because the velocity is normalized byCd . In
the following, we use the parametersm i51836,mb540 mi

for K1 ions, also, we assume thatsd.0. Figure 1 shows
the variation of the phase velocity,l, corresponding to dif-
ferent system parameter variations. It shows that:

~i! l decreases as the ratio of ion density to elect
density,d1 or the ratio of beam density to electron densi
d2 increases;

~ii ! l deceases as the ratio of ion temperature to elec
temperature,b1 increases;

~iii ! for small d1 , l increases as the ratio of beam tem
perature to electron temperature,bb increases. Asd1 andbb

increase,l decreases;

-
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FIG. 4. Shows the variation of the two critical phase velocities (l1c ,l2c); in ~a,c! vs d1 , d2, whereb150.4, bb50.2, and in~b,d! vs b1 ,bb , whered1

520, d255, mbd525 andv050.1.
a

ts
e
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~iv! l increases as the ratio of dust mass to beam m
mbd , increases.

Now, we study the variation of the KdV solitons, with i
different two types as the system parameter vary. Figur
shows the ranges of existence of the rarefactive soliton
the compressive soliton of the KdV equation, Eq.~11!. We
can observe that there are two critical phase velocities
which KdV fails to describe the system that force us to se
another equation to describe the system at these cri
cases, that has been derived and so-called MKdV, Eq.~16!.
Figure 3 shows the variation of the width of the two types
KdV solitons due to various system parameter variations
shows that there are two distinct behaviors:

~1! below the second critical phase velocity,l2c , the
width of the solitons

— ~increase/decrease! as (l or d2 /d1 or bb) increases
— does not change with variation inb1 ;

~2! abovel2c , the width of the solitons;
— ~increase/decrease! as (d2 /d1 ,b2 or l) increases
— decrease slightly asb1 increases.

In Fig. 4 we study the variation of the two critical pha
velocity, (l1c ,l2c), corresponding to various system para
eter variations. It shows that
ss

2
nd

at
k
al

f
It

-

~i! (l1c and/orl2c) decrease asd1 or b1 increases but in
different manner;

~ii ! asbb increases (l1c /l2c) ~increases/decreases!, re-
spectively;

~iii ! l2c increases corresponding to variation ind2 for
smalld2. For higherd2, it decreases asd2 increases. On the
other hand,l1c decreases asd2 increases. Figure 5 show th
variation of the soliton solutions of the MKdV equation an
the KdV type equations, around the critical phase velocit
corresponding to system parameter variations, remember
both the two types coexisted at the critical phase velocit
Also, it illustrates the existence and the ability of each eq
tion to describe the system at critical cases. Since at s
critical phase velocities, MKdV fails to describe the syste
that motive to seek a higher evolution equation that can
scribe the system, Eq.~30!. we can observe that;

~iv! f2m increases asd1 ,d2, or b1 increases, but it de-
creases asbb increases;

~v! f3m decreases asd1 or b1 increases, but it increase
asbb increases;

~vi! For smallerd1 and d2 values MKdV equation is
sufficient to describe the system atl1c and KdV type equa-
tion is able to describe the system atl2c . For higherd1 and
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FIG. 5. ~a! Shows the variation of the soliton solution of the MKdV equations vsd1 ,d2, whereb150.4, bb50.2, ~b! its variations vsb1 ,bb , whered1

510, d2520. ~c! Shows the variation of the soliton solution of the KdV type equation vsd1 ,d2, whereb150.4, bb50.2, and~d! its variations vsb1 ,bb ,
whered1520, d255, mbd525, v050.1.
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d2 values MKdV equation is sufficient to describe the syst
at l1c andl2c , the contrary for smaller or moderate valu
of d2 that KdV type equation is sufficient to describe t
system atl1c andl2c . For smallerd2 and higherd2 values
KdV type equation is sufficient to describe the system
l2c .

In this paper we have investigated the effect of nonlin
dust charging on DA waves and double layers in a du
plasma consisting of warm dust fluid, isothermal electro
and an arbitrary streaming ion beam. We have derived K
Eq. ~11! and obtained DA solitary waves. We get both t
compressive and rarefactive DA solitons. At some criti
phase velocities KdV equation fails to describe the sys
that forced us to apply a new stretching and then we g
MKdV equation with cubic nonlinearity, Eq.~16! that admits
coexistence of both compressive and rarefactive solitons
the other hand, there exist some critical points that make
nonlinear coefficients of the KdV and MKdV equations b
come zero, then they also fail to describe the system and
replace the previous two stretching variables with a ne
one. Applying this stretching leads us to get the KdV ty
Eq. ~30! that covers and solve this problem and allow on
compressive soliton. Also, we get the condition under wh
t

r
y
s
V

l
m
a

n
e

e
r

h

double layers with two different types can existed. Thus, D
solitons exist in the region where DA double layers do n
exist.

Also, the existence and dependence of each solitary
lution corresponding to various system parameter variati
are investigated. From this investigation, we can observe
violence effect of the arbitrary streaming velocity of th
beam and the dust charging fluctuation on the discussed
tem. Thus, we can conclude that the quite dense positive
the dust temperature, the ion beam density, mass ratio
temperature govern the collective motion of dust grains.

On the other hand, we point out that the model cons
ered here is structurally unstable, in the sense that a s
change in the parameters or inclusion of small additio
effects will not produce just a small change in the solutio
but completely change its nature, for example, from dou
layer to solitary wave. Considering such a viewpoint, t
results presented here are highly charged, heavy, micro
teresized dust grains. As nonlinear DA waves with an
beam were present in dusty plasma which have been
served in laboratory plasmas, they may serve as a sourc
improvement in the etching rate of plasma processing. T
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investigation would be effective for understanding the pro
erties of grain charging and small amplitude DA waves w
an arbitrary streaming positive ion beam.

APPENDIX

In this appendix, we derive expressions for the pertur
tive quantities of normalized dust charge number associ
with the corresponding perturbative quantities of normaliz
local plasma potential. From Eqs.~7! and ~8! we have, for
the first-order of«

Zd15
gbf1

Coga
5g1f1 ,

ga5b1 exp~sb1Co!1a1d11a2d2bbF2),

and

gb52@a1d1~12sCo!2~a2d2mbdR1

3~F12sbbF2Co!/s!1b1 exp~sb1C0!#.

For the second-order of«, we have

Zd25
1

gasCo
H 21

2
s2b1

2 exp~sb1Co!@f11CoZd1#2

2a2Co~d11d221!

•sbbZd1nb1F21a2~F12sbbF2Co!
-

-
ed
d

3~d11d221!nb21sf2@gb2CgaC0/l̃R1#

1
1

2
s2a1d1f1@@12sCo#f112Zd1Co#J ,

from which we can derive the following form:

Zd25g1f21g2f1
2 ,g25

gc

Coga
,

with

gc5gc11gc21gc3 ,

where

gc15
s

2
@2b1

2 exp~sb1Co!1a1d1~12sCo!

1CgaCoG1/2R1l̃ #,

gc25sg1Co@2b1
2 exp~sb1Co!1a1d1

2~a2d2bbmbdR1F2 /s!#,

gc352s~b1g1Co!2 exp~sb1Co!/2.

Furthermore, for the third-order of«, we have
Zd35
1

gasCo
H a1d1s2f1f2@12sCo#1sf3@gb2CgaC0/R1l̃ #1$~d11d221!%@2a2sbbCoF2~Zd1nb21Zd2nb1!

1a2~F12sbbF2Co!nb3#2
1

2
s3Zd1f1

2Coa1d11a1d1s2Co~Zd2f11Zd1f2!

2
1

6
s3f1

3~a1d1@12sCo# !2s2b1
2 exp~sb1Co!S @f21CoZd2#@f11CoZd1#1

1

6
sb1@f11CoZd1#3D J .
After straightforward calculations, with the aid of Eqs.~9!
and ~15!, the last equation can be rewritten as

Zd35g1f312g2f2f11g3f1
3 ,

with

g35
gd

Coga
, gd5gd11gd21gd31gd41gd51gd6 ,

gd15
2s2

6
@b1

3 exp~sb1Co!1a1d1~12sCo!#

1gaC0CG2/R1l̃ ,

gd252
g1Co

2
@s2a1d11a2d2mbdR1bbF2G1

1s2b1
3 exp~sb1Co!#,
gd35
g2gc2

g1
, gd452sg1g2~b1Co!2 exp~sb1Co!,

gd55sb1gd4g1/2g2 , gd65Cosb1gd4g1
2/6g2 .

Similarly, we can derive the form ofZd4 that has the form of

Zd45g1f412g2~f3f11f2
2!13g3f1

2f21g4f1
4 ,

g45
ge

gaCo
, ge5(

i 51

11

gei ,

ge15
S3

24
$a1d1@12sCo#2b1

4 exp~sb1Co!%

1
5

8
~CgaCoR1

5mbd
3 /l̃ !@~7l̃61105l̃4L

1189l̃2L2127L3!#,
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ge25
S3Cog1

6
$a1d12b1

4 exp~sb1Co!%

2a2d2mbdR1Cobbg1F2G2 ,

ge35g2gd2 /g1 , ge45gc2g3 /g1 , ge55gd4g2/2g1 ,

ge65g3gd4 /g2 , ge75sb1gd4 ,

ge85s2b1
2gd4g1/4g2 ,

ge95sb1gd4g1Co/2, ge105s2b1
2gd4g1

2Co/6g2 ,

ge115s2b1
2gd4g1

3Co/24g2 .
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