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Dust acoustic solitary waves and double layers in a dusty plasma
with an arbitrary streaming ion beam
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The effects of variable dust charge, dust temperature and an arbitrary streaming ion beam on small
amplitude dust acoustic waves are investigated. It is found that both compressive and rarefactive
solitons as well as double layers exist. There exists a critical ion beam velocity below which the ion
beam is unable to generate solitons. Korteweg—de Wd¥) equations with third and fourth-order
nonlinearity at the critical values are derived and the properties of dust acoustic solitary waves are
discussed. In the vicinity of the critical values, KdV-type with mixed nonlinearity is obtained. The
quite dense positive ion, the dust temperature, the ion beam density, mass ratio and temperature
govern the existence of dust acoustic waves. The findings of this investigation may be useful in
understanding laboratory plasma phenomena and astrophysical situatior®003©American
Institute of Physics.[DOI: 10.1063/1.1557912

I. INTRODUCTION streaming in his calculation of the beam current at the dust

) o ) ) t;c];qrain surface. Also he considered the beam fluid as isother-
There has been a rapidly growing interest in physics ofy,1y distributed ones. In this paper, we focus our attention

dusty plasmas not only because of dust being an omnipresegf, the characteristics and behavior of the small amplitude

ingredient of our universe, but also because of its vital role inyjectrostatic dust acoustic waves in an unmagnetized dusty
understanding different collective processe®de modifica- plasma with an arbitrary streaming positive ion beam.

tion, new eigenmodes, _coheregtéstructures,) gte.astro- The manuscript is organized as follows. The basic equa-
physical and space environments. The consideration of tjons describing the dusty plasma system under consider-

chgrged dust grains in a plasma does. not only modify th‘%ﬂion, incorporating the contribution from the variable dust
existing plasma wave spectfdbut also introduces a num- charge is given in Sec. II. In Sec. lll, using current balance
ber of new novel eigenmodes, such as dust acolB®)  congition, the dependence of the dust charge on the plasma
waves,  dust ion acoustidDIA) waves, ' dust lattice 4 ameters, especially the relation of the dust charge varia-
wavesl,_ et _ _ T tion to the plasma potential is obtained. In Sec. IV, using a
~Using a reductive perturbation theory, Xet al:™ de-  reqyctive perturbation technique, the small amplitude DA
rived small amplitude DA solitons with varying dust chargesgjitary structures are studied with the inclusion of number
and they have shown that only rarefactive solitary wavegyt imnortant effects as adiabatic dust fluid temperature, adia-

exist when the Mach number lies within an appropriate réy4tic variation of dust grain charges and ion beam. In Sec. V,
gime depending on the system parameters. Also, the DA ol critical cases for the system are discussed and the modi-

tary waves and double layers in dgsty plasma wit'h variablgied Korteweg—de VriesMKdV) and Korteweg—de Vries
dust charge and two-temperature ions were studied by le‘ype (KdV type) equations with third, fourth-order, and

16 H
et al.™ They have shown that both compressive and rarefacyiyeq nonlinearity are obtained. Their solutions are also dis-

tive solitons as well as double layers exist. Also, the amplissed. Section VI is devoted to the discussion and conclu-
tudes of the dust solitary waves become smaller and the reg,

gime of Mach number is extended wider for the variable dust

charge situation with the case of constant dust charge. On tHe BASIC EQUATIONS

other hand, the ion beams in laboratory dusty plasmas have The dusty plasma we are studying, consists of four com-
become indispensable in the field of materials processingonents; extremely massive, highly negatively charged dust
such as etching, chemical vapor deposition and surfacgrains, electrons, ions and positive ion beam. Charge neutral-
modification’” Such circumstances in plasma applicationsity at equilibrium reads

and the ease of realizing dusty plasmas on a laboratory scale
have accelerated active studies on dust phenomena in plas-
mas. The topics of nonlinear grain charge variation and elecaheren;,, ny,, Ney, andny, are the unperturbed ion, beam,
trostatic ion wave$''° have been reported by regarding dustelectron, and dust number densities, respectively, Zpds
grains as point charges, where the Debye length is mucthe unperturbed number of charges residing on the dust grain
larger than the inter-grain distance. The nonlinear dynamiceeasured in the unit of electron charge.

of the dust charge and large amplitude DA waves in a plasma For one-dimensional low-frequency DA motions, we
with an ion beam were studied by NejéhHe treated the have the following nondimensional equations for the ion
beam ions as thermal without the inclusion of the particlebeam and warm dust fluid$:

Nio+ Nbo=Neot ZgoNdo, 1
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ang  d(Ngug) dQq dQq
—_— = 2 —+u =lgtli+1
at P @ at 4 ax b
dugy dugy ang dp We notice that the characteristic time for dust motion is of
—p TUdp T30dna—-—2Za— =0, (3 order of tens of milliseconds for micrometersized graths,
while the dust charging time is typically of order of 1Ds.
an,  A(Npvy) Therefore, on the hydrodynamic time scale, the dust charge
7+ IX =0, @ can quickly reach local equilibrium, at which the currents
from the electrons, beam and ions to the dust are balanced.
vp vy Ny do The current balance equation retfs
t TUb gy T 3Mbd0uNb - F ppa =0, 5 a
Ieo+|i0+|b0%0'
P _ According to the well-known orbit-motion-limited probe
——5 =ZgNgtNe—Ni—Np, (6) 22 - :
IX2 model;“ we have the following expressions for the electron

i . and ion currents for spherical dust grains with radius
whereny andug refer to the number density and fluid veloc-
ed

ity of the dust grain, respectively, ami, and v, are the

corresponding beam parameters, respectively. All densities Te
are normalized byny,Z4,. The space coordinate time t,
velocities and electrostatic potentialare normalized by the
Debye length\ pg=(Tes/4mZgoNg0e?) Y% the inverse dust ed
plasma frequency 4= (my/4mZ5,ng.e2)*2 the DA speed li=enr?(8T, /Wmi)”zﬂi( 1- T)
Cy=(ZgoTe/My)Y? and Teg/e, respectively. The dimen- '
sionless number densities of electrons and ions are expressedr ion beam that have an arbitrary streaming velociy

lo=—enr?(8T./mmy)n, exp{

and

as we can express the ion beam current at grain sutfaCeas
2 1/2, ed
Ne=7 exp(ﬂl&b) lp=emr“(8Ty/mmy) Ny F1(Uo) = Fa(Uo) 7|,
do
where® denotes the dust grain surface potential relative to
ni=Z——exXH—s¢). the plasma potentiap and
do''do
Also, we introduce the following notations: F1(Uo=00/\20b11)
Tq Tp, 1 my Vm 2 2
4 ZgoTer T SBy P myZg, 4u, ? ° ?
T; T T
01=Njg/Ngo, 6= Npo/Neg, Blz-l-_ea Bb:-l-_ba Fo(up)= erf( o)y  Upth= m_b
Test o1+ 06,1 If u,=0, we can geF;=F,=1 which tends to the case of
ST T\ 5,1 0,80 By nonstreaming beam that considered by NéfbRrom the

current balance equation, we have
with temperatureT, for electrons, temperatur€; for ions

and temperatur@, for beam in unit of energy, respectively, @161(1—s¥)exp(=s®)+azny(d1+ 6,—1)(F1—F2sBpW)
(mq/my,) are the mass didust/beam particles, respectively.

=exp(sp[V+¢]), )
where  ¥=ed/Ty and  a;=(B1/u)Y%  ay
lll. CHARGING OF DUST GRAINS =(Bolpo)"™ Bo=P1lBy, pip=Mp /M.

Equation (7) is important for determining the dust

Dust particles are charged due to a variety of processesharges due to the relatid@@y=C®, whereC is the capaci-
including the bombardment of the dust grain surface bytance of dust grain. We have the normalized dust charges
background plasma electrons, ions and incident ion beam&,=W¥/V¥,, where¥ .=V (4=0) is the dust surface float-
photoelectron emission by ultravioléV) radiation, ion ing potential with respect to the unperturbed plasma potential
sputtering, secondary electron production, etc. In low-at infinite place. ¥, can be determined from the following
temperature laboratory plasmas, dust particles are mainlyanscendental equation:
negatively charged when any plasma electrons hitting the
surface of the dust grains are attached to it and simply lost
from the background plasntaln general, the dust charge
variable Qg is determined by the charge current balanceAs can be seen, the dust charge is very sensitive to the small
equatior! disturbance ofp around the unperturbed states. This point is

a@101(1=8V,) + ay6,(F1—=SB,F, Vo) =exp(spW,).
8
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very important for explanation how the variable dust chargeand C=[ a8\ upgR3(F1—SBpF 2V o)/sy. V] and y, is

influences the shape of solitons and solitary waves. derived in the Appendix. To find the stationary solution of
Eqg. (11), we substitutep= ¢— M 7 into Eq.(11) and integrate
twice, using the boundary conditions

dei(n) d2¢1(77)

In order to study the dynamics of small amplitude DA $1(7) =0, dy -0 dr? —0 as[y|—=,
solitary waves in the presence of adiabatic variation of dust (12)
charges, we derive an evolution equation from E@%-(6)

by employing a reductive perturbation technique and th
stretched coordinat&sé=sY2(x—\t), and r=¢%%, where de¢,\2 M2 A
e is a small parameter and is the solitary wave velocity (W) - B ( - m‘f’l)-
normalized byC,. The variablesny, uq, n,, vy, Z4, and ] . o

¢ are then expanded as The one-soliton solution ofll) is given by

nd:1+8nd1+82nd2+ 83nd3+ ey ¢1:¢1m SeCH[ 77W1]a (13)

where ¢1,=3M/A is the amplitude andvl_1=2\/B/M is

the width. If for a given value of ion beam velociti is
Ug=eUgy+&%Ugp+e3ugg+ - - -, negative, the width of the soliton becomes imaginary and
hence the ion beam will be unstable to excite DA waves in
our system. Therefore, the condition for generation of DA
Zg=1+eZq +8°Zyo+e3Zys+ - -, waves is that the ion beam velocity must satisfy

IV. DUST ACOUSTIC SOLITONS

Jo get

ny,= v+ Snb1+82nb2+ 83nb3+ ey

vb=vo+svb1+szvb2+83vb3+ cee

p=spitelpytedpgt .- NvpupgRi+AR3>C. (14)

Substituting these expansions into E¢®—(6), and using Thus there is an ion beam velocity below which the ion beam
¥ =" ,Z,in Eq.(7), then collecting terms of different pow- does not generate DA soliton. The corresponding velocity is
ers ofg, in the lowest order we obtain a function of beam—dust concentration, the initial surface

~ potential, the dust temperature and beam temperature.
Np1=ppa?Rid1, vp1=NupdR1b1, Za1=7v1¢1,

Ng1=— $1R,, Ug1=—ARy; X=7\—vo (9) V. CRITICAL CASES
where R;=(X2=3A) "1, Ry=(A\2—30y) L A=0opupqr? The propagati(_)n of compress?ve and rar_ef_active solitons
and the parametey, is derived in the Appendix. depends on the sign of the nonllnea_r coefflcmlnt,of _tr_\e
The linear dispersion relation is given by KdV equation. If we assume that the dispersion coefficient of
the KdV equationsB, is positive, thus the DA waves are
S(B1+ 01) (compressive/rarefactiyéf (A>0/A<0). When the phase

N5 +6,-1) M baR1F Rz, (10 velocity \ reaches the so-callex,; critical phase velocity,

. . .. the nonlinear coefficient of the KdV equation vanishes

from which one can get a fourth-order algebraic equation in )

- =0, and therefore, KdV equation breaks down and one has

A. IFall the roots are real, each root would indicate a pOS_to seek for another equation suitable for describing the evo-
sible solitary wave. It is well-known thati,=0 gives the q 9

stability of the waves that can be easily studied. However, ir%utlon of the system. This implies that the stretching coordi-

. . . nates mentioned above are not valid for this critical case and
order to get the proper DA solitary waves with an ion beam ) : -
A . . . Wwe use new stretching coordinates for obtaining the evolu-
we have chosen the initial velocity of the ion beam, function- . . I
. . tion equation describing the system.
ally depending on the system parameters in such a way tha I
instability of the waves does not play a significant part When the plasma system parameters » We use
y play g P the stretching coordinates é=s(x—\t),7=¢3%, and ex-

The second order ia yields a system of equations in the and the dependent variables in the same manner as before.

second-order perturbed quantities. Eliminating the Seconogubstituting them into Eq€2)—(6), and using¥ =¥ ,Z, in
order perturbed quantities, we get the standard KdV equatioEq. (7). then collecting terms in ,different bowers Oefdwe

ddq dp, Py obtain the same relations #8) for the lowest order ok
7+A¢1(9—€+ B Py =0, (1) (coefficient ofe?), and to the order o3, we get

where Nb2= wpavRa{ b2+ Gl $7/2]},
B~1=2(AR2— C+ N vupqR2), Na2=—Ro{¢ho— J1[ $3/2]},

Vb2 =N ppdRa{ 2+ hal ¢2/2]},
Ugz= — ARo{ o — K4 ¢2/2]},
— 2y, 3udRIV(NZ+A), Zay= 12+ Y293, (15)

—pi+o

—c2
AB=S 57 5,-1

+Ry(37:—3(\2+ 0)R)
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where 07
G1=3upd N2+ AIRE,  Hi=pmpgRIN2+9A], 0.6
0.5 1

Ji=—y1+3[A\%+04]R5, Ki=—7y;+[A\?+904]R5. 04

If we consider the next-order in, we obtain a system of <
equations in the third-order perturbed quantities. Solving this
system with the aid of Eq$9) and(15), we finally obtain the

MKdV equation

034 —=—5,=50, =25
0.2 —a— 5,720, =25
—&—5,=5, 1, =25

—v—§,=5, 1,,~250
004 —x—05,=30, =25

0.1 1

Ay dpidy, B, 0P 0 5 10 15 20 25 30 35 40 45 50 55
—+ + +F——=
P A P B pye F 7% 0, (16) 5,
where (a)
3 3
-3 Bi+s, 1 , 0.75 -
- |_== = |4+= _ —A— ,=0.4,5,=0.2
FIB="% S+ 6,—1 T 58727 37)R s 0707 —v— p,=02,p,702
0.65 —s—},=0.4,p,=0.1
2 3 1 2 4 2\ 5 0.60 7
—3(N“tog)Ryy+ 5(30)\ 04¢t+5N"+909)R; 055
< 050
1 ~ 0.45
+ 5 (30K*A+ 5N+ 9A) g Ry, 0.40 ]
0.35
where y; is derived in the Appendix. Substituting= ¢ 0.30 -
—M~in Eqg. (16) and integrating twice, using the boundary 0 5 1M 15 20 25 30 35 40 45 S0 55
conditions;(11), we get forA=0 &,
doa)? M o F 9
dzy B "t 2M 1)

FIG. 1. Shows the variation of phase velocky (a) vs 8, and &;, where
B1=0.4, B,=0.2,v,=0.1, (b) vs B; and By, wheres,=5, u,q=25, vg

The one-soliton solution of Eq16) is given by o

b1= bom Sech nw,], (17)

where the amplitudep,,= + V2M/F, and the widthw, *

=yB/M =0.5W1_1. Obviously, the physically reasonable

solitons, correspond to the conditiéi>0, and in this case

both compressive and rarefactive solitons are also allowed tlgnply

coexist. -D —D?
On the other hand, wheA—0 but A#0, Eqg. (16)

would reduce to

The conditions(21) ensure that the particle will remain at
rest at¢, = ¢, and no reflection will occur. These conditions

(22

Substituting forM andD into the relation(20), we obtain

dy Ibr P 9% 2
——+D¢— +B—=+F—=0, 18 $1F
ar "P1aE TBE T N O . 23
where we have used¢,—D ¢,/2.1°%°%° Substituting 7 From Eqs.(19) and (23), we get
=¢—Mrin Eq. (16) and integrating twice, using the bound- " 5
ary conditionsy(11), we get d¢, |\~ —éiF )
1/dgs\> Mgl D )
2.4, ~ 2B 1- md’l— m(ﬁl =—V(¢1,M).  Then, the double layer solution is
(19 ¢m
Hence $1=— (1= Tanti pw]), (24)
V(M) = M 2 " F 4 20 where
vM)= 5 TeB 1T 4B P -
Wflzzx/ 2BF
For the formation of double layer, we must have D '
dv 2y Obviously this double layer solution exists only when the
V(¢m,M)=0, (W) =0 and | — <0 system parameters make the conditfor 0 is fulfilled. Here
V=9 Y= we get the two types of DA double layers depending on the
(21 sign of D.
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A FIG. 2. Shows the existence of the rar-

(C) (30’ 5, 04, 02, 25, 01) (d) (20, 5, 02’ 02, 25, 01) efactive and compressive solitons of

the KdV equation and its variation cor-

40 40 2 20 responding to the system parameter
variation attached with each graph, the

2 LJ 20 10 L 10 used brackets are in the form

E ¢ 0 E 9 0 (01,62,81,Bb +Mbd :V0)-
s s
_20 T F -20 -10 j (J -10

—40 —40 -20 -20
0 05 1 15 2 25 3 35 0 05 1 15 2 25 3 35
A A

(¢) 20, 5, 0.4, 0.2, 250, 0.1) () (20, 30, 0.4, 0.2, 25,0.1)

40 40

20 L 2
0 0

-20 j F -20

—40 —-40
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A

(e) (20, 5, 0.4,0.2, 25, 1)

dim

Now, if the nonlinear coefficient of the MKdV equation Ngz=Ro{— 3+ Jl¢1¢2+32¢§}, (27)
vanishesF =0, therefore, MKdV equation breaks down also 3
and one has to look for another equation suitable for describ-  Uds=ARa{ = b3+ Kid1dp+ Kz 1}, (28)

ing the. evolution of the system. This implies .that.both thg Zas=y1bat 2¥adby ot 73¢i, (29)
stretching coordinates used before become invalid and in-

stead of them we use the new stretching coordifates Where

=e¥(x—t),7=¢%%, and expand those dependent vari- 5 5

ables as before. Substituting them into E@—(6), and us- G,=(30N?A +5\*+ 9/\2)(
ing V=V _Z, in Eq. (7), then collecting the terms of differ-
ent powers ok, we obtain the linear relation, E(P) for the
lowest order, and for the next order efwe get the same
relations as Eq(15). Also, we can obtain the third-order
perturbed quantities as

Npa= foa?Ra{ 3+ G11da+ Gods}, (25)

1
~ - 2 4, 0.2 pA
vp3= Mg\ Re{ 3+ Hidhr ot Ho 3}, (26) 5 (80N g 5N+ 907)R;,

2
Mo
2

RT,
H 1 30N2A + N4+ 45A2) u2 RY
2= 5 ( ) bR

3 1
322571[7\ +Ud]R2*§7’2
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FIG. 3. Shows the variation of the width of both the rarefactive and com-

pressive solitonsa) vs §,, §; and\, where ;=
vo=0.1 and(b) vs B;, By, and\, where §;=
=0.1.

0.4, By=
20, 8,=

02 Mpd= 25
S, Mpa=25, v

1 , 1
K2:§7’1[7\ +9Ud]R2_§’}’2

1
- E(30>\20d+ \*+4503)R;,

andy; is derived in the Appendix. If we continue to the next

order ofe, we get a system of equations in the fourth- order
perturbed quantities. Solving that system yields to a nevy,

type of KdV equation, that can be called KdV type

J d 3
¢1+H ¢l+B 1 =0, (30)
o0& g
where
st Bi-6 -
HIB=>, St 0,1 Y4t Ry 73t dom

Y2 3
+ 5 {8+ o RE— yit+ g N+ o)RS

%(3o>\zad+ 5A*+903)R;

S. K. El-Labany and W. F. El-Taibany

5
—RS(7A8+108\*0y+ 18N 205+ 2707)]

+
8

5
3 RYud [(7N8+ 105\ *A + 189\ 2A 2+ 27A%) ],
where vy, is derived in the Appendix. Substituting= ¢
—M~in Eq. (30) and integrating twice, using the boundary
conditions; we get

de,\2 M
(W) "B (1‘—¢1)
The one-soliton solution of30) is given by

$1= dam Sech pwa], (31)

where the amplitude and the width are given kg,
=(5M/2H)¥® andw; = 2/B/M =w; /3, respectively.

VI. DISCUSSION AND CONCLUSION

In this system, the orderingiy>m;>m, holds, as ob-
tained in laboratory plasmas. Typical laboratory plasma fre-
quencies are POHz: 10 % Hz: 10 °Hz, and have
roughly the same ordering as the mass ratios. Thus, the in-
clusion of the mass ratios is equal to considering the collec-
tive motion of dust grain particlé§*?°when we define the
velocities of the electrons, positive ions, and dust grains in
equilibrium asveg, vig, and vge,, and assume thaig,
>V > Vig ,U o> Udth Wherev e, (vgim) andvpp, are the elec-
tron (dush thermal velocity and phase velocity of the dust
acoustic waves, respectively. The dust thermal velocity, in
general, is much less than the wave phase velocity because
of the massive dust grains. The ion-beam veloeityis as-
sumed to be less than the phase velocityy,
=(Z4oTe/my) Y2 Since the dust acoustic instability is
brought about by the conditiéf*°v ,>v ,,, the dust acous-
tic instability does not occur in our system. It is also assumed
that the ion-beam velocity is less than the beam thermal ve-
locity. It is noted that, in the case whereny=1.6
X102 kg, Z4,=1C%, Te=1 eV, Ti=0.4 eV, the dust
thermal velocity isvgp=1.45 m/s, the DA velocity,Cqy
=(ZgoTe/My)>=280 m/s and the wave phase velocity
U ph=(ZgoTe/Mg)>=300 mV/s. If we assume K ions as the
on-beam component, the beam thermal velocityvigy
=2.2x10° m/s. When the beam velocity is 28 m/s, we ob—
tain v,=0.1 because the velocity is normalized Gy .
the following, we use the parameteis=1836,m,=40 mI
for K+ ions, also, we assume thaty=0. Figure 1 shows
the variation of the phase velocity, corresponding to dif-
ferent system parameter variations. It shows that:

(i) A decreases as the ratio of ion density to electron
density, 5, or the ratio of beam density to electron density,
&, increases;

(i) X deceases as the ratio of ion temperature to electron
temperature; increases;

(iii ) for small 81, \ increases as the ratio of beam tem-
perature to electron temperatugg, increases. A$, and g,
increase)\ decreases;
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FIG. 4. Shows the variation of the two critical phase velocitieg. (\»c); in (8,0 vs 81, 8,, whereB,=0.4, 3,=0.2, and in(b,d) vs B,,8,, wheres,;
=20, 6,=5, upg=25 andvy=0.1.

(iv) N increases as the ratio of dust mass to beam mass (i) (A1 and/or\,.) decrease a8, or 8, increases but in
Mbd, INCreases. different manner;

Now, we study the variation of the KdV solitons, with its (i) as By, increases X1./\,) (increases/decreagese-
different two types as the system parameter vary. Figure 2pectively;
shows the ranges of existence of the rarefactive soliton and (iii) \,. increases corresponding to variation dp for
the compressive soliton of the KdV equation, Efjl). We  small §,. For highers,, it decreases a8, increases. On the
can observe that there are two critical phase velocities atther handj ;. decreases a8, increases. Figure 5 show the
which KdV fails to describe the system that force us to seekvariation of the soliton solutions of the MKdV equation and
another equation to describe the system at these criticéhe KdV type equations, around the critical phase velocities,
cases, that has been derived and so-called MKdV,(Eg). corresponding to system parameter variations, remember that
Figure 3 shows the variation of the width of the two types ofboth the two types coexisted at the critical phase velocities.
KdV solitons due to various system parameter variations. IAlso, it illustrates the existence and the ability of each equa-

shows that there are two distinct behaviors: tion to describe the system at critical cases. Since at some
(1) below the second critical phase velocity,., the  critical phase velocities, MKdV fails to describe the system
width of the solitons that motive to seek a higher evolution equation that can de-
— (increase/decreapas (\ or §,/5, or By) increases scribe the system, E430). we can observe that;
— does not change with variation 8y ; (iv) ¢o, increases ag;,d,, or B4 increases, but it de-
(2) abovel,, the width of the solitons; creases a@y, increases;
— (increase/decreasas (5,/51,8, or \) increases (V) ¢3m decreases a8, or B, increases, but it increases
— decrease slightly a8, increases. as By, increases;

In Fig. 4 we study the variation of the two critical phase (vi) For smallers; and &, values MKdV equation is
velocity, (\1c,\2c), corresponding to various system param-sufficient to describe the system{, and KdV type equa-
eter variations. It shows that tion is able to describe the systemiat.. For highers; and
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FIG. 5. (a) Shows the variation of the soliton solution of the MKdV equationsdysé,, whereB,=0.4, B,=0.2, (b) its variations vsB,,8,, wheres;
=10, §,=20. (c) Shows the variation of the soliton solution of the KdV type equatiodysS,, whereB,;=0.4, B,=0.2, and(d) its variations vs8,, 8y,
where§,=20, §,=5, upq=25, vo=0.1.

&, values MKdV equation is sufficient to describe the systemdouble layers with two different types can existed. Thus, DA
atA,. andi,., the contrary for smaller or moderate values solitons exist in the region where DA double layers do not
of &, that KdV type equation is sufficient to describe the exist.
system at ;. and\,.. For smallers, and highers, values Also, the existence and dependence of each solitary so-
KdV type equation is sufficient to describe the system a{ytion corresponding to various system parameter variations
Napce _ _ _are investigated. From this investigation, we can observe the
In this paper we have investigated the effect of nonlineatjgjence effect of the arbitrary streaming velocity of the
dust charging on DA waves and double layers in a dustyyeam and the dust charging fluctuation on the discussed sys-

plasma consisting of warm dust fluid, isothermal electronstem. Thus, we can conclude that the quite dense positive ion,
and an arbitrary streaming ion beam. We have derived KdV/,

Eqg. (11) and obtained DA solitary waves. We get both thethe dust temperature, the ion peam d'ensny, mass r'at|o and
. . . ... _temperature govern the collective motion of dust grains.

compressive and rarefactive DA solitons. At some critical On the other hand. we boint out that the model consid-
phase velocities KdV equation fails to describe the system _ ' P .

that forced us to apply a new stretching and then we get sred herg is structurally unstaple, in the sense that e'l'small
MKdV equation with cubic nonlinearity, Eq16) that admits ~ cange in the parameters or inclusion of small additional
coexistence of both compressive and rarefactive solitons. Offfects will not produce just a small change in the solution,
the other hand, there exist some critical points that make thBut completely change its nature, for example, from double
nonlinear coefficients of the KdV and MKdV equations be-layer to solitary wave. Considering such a viewpoint, the
come zero, then they also fail to describe the system and wi€sults presented here are highly charged, heavy, microme-
replace the previous two stretching variables with a neweteresized dust grains. As nonlinear DA waves with an ion
one. Applying this stretching leads us to get the KdV typebeam were present in dusty plasma which have been ob-
Eq. (30) that covers and solve this problem and allow onlyserved in laboratory plasmas, they may serve as a source of
compressive soliton. Also, we get the condition under whichimprovement in the etching rate of plasma processing. This
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investigation would be effective for understanding the prop- X (814 83— 1)Npa+ Sho[ vo— CyaWo/ ARy ]
erties of grain charging and small amplitude DA waves with a
an arbitrary streaming positive ion beam.

1
+ 552%51(1’1[[1_ sWold1+2Z4,Vo]1,

APPENDIX
In this appendix, we derive expressions for the perturbaIrom which we can derive the following form:

tive quantities of normalized dust charge number associated y
with the corresponding perturbative quantities of normalized  Z,= y1¢,+ 'yz(j)%,'yzz—c,
local plasma potential. From Eqgé&7) and (8) we have, for oYa

the first-order ofe with
YoP1
Zdl:\poya:71¢1’ Ye=Ye1t Y2t Ves,
Ya=B1eXpsB1V,) + @191+ a26,6,F ), where
and s .
=—[—pBrexpsBV,) +a,6,(1—s¥
yo=—[@y81(1—SW ) — (a2oppgRy Ye1 2[ BiexpspVo) + ay61( )
X (F1=sBpF2Wo)/s) + B expsBiWo)]. +Cy,¥,G,/2R\ ],

For the second-order ef, we have 5
Ye2=5v1Wol — BrEXASB W) + 161

1 -1
Zgo=——1 5 S BIEXASBLY ) b1+ V¥ ;Zg1]? —(@285BpmpdR1F2/S)],
¥aSWo | 2
—ayVo(01+6,—1) Yea= —S(B1y1V o) expsBiV,)/2.
“SBpZa1Np1F 2+ ax(F1—SBpFL¥,) Furthermore, for the third-order af we have

1 ~
stzm( a1815°¢1o[ 1 -5V ]+ 5Pal v~ CyaW o/ RINH{( 81+ 8~ 1) — a25BpW oF 2(Zg1Np2 + Zg2Np1)
a (o}

1
+ ay(F1—=SBpF oW o)Nps] — 5532d1¢%‘1’06¥151+ @1615°V o(Zgp 1+ Zg1b2)

1 1
- gssﬁbi’(aﬁl[l_ sW,o])—s?B2 expsBiV )| [ ot W oZual 1+ W oZgs]+ ESB1[¢1+ ‘I’ozdl]s) ] .

After straightforward calculations, with the aid of Ed9) YoVer )
and(15), the last equation can be rewritten as Yas= T, T Y= —sy172(B1V o) exp(sB1 V),
_ 3
Zy3=y1¢3+2y20201F 37, Yas=SB1Yaa¥1/2Y2,  Yas= Y oSB1YaaV3I6V2.
with Similarly, we can derive the form &, that has the form of

Zga=v1ba+27a( a1+ d3) +3y3dido+ vads,

Yd
YsTg o, YaT Ydit Ya2 T Ya3t Yaat YdasT Vs>
07a

11
2 Ya= Te Y _2 Y
—S 47 Ay ! e . eir
Yar=—g LB eXHSBIV ) + @1 8,(1- 5V, ol T E

3 S
+ v,V oCGy/RiN, 7e1:2_4{a151[ 1-s¥,]— Bl expsB¥,)}
‘)/1\1, 5 ~ ~ ~
V2=~ T[S @181+ azdypnaRi BoF oGy + 5 (Cra¥oRIuG/MI(7A+ 108 A

+s2BYexp(spiV,)], +189K2A2+27A3)],



998 Phys. Plasmas, Vol. 10, No. 4, April 2003

83\1’ Y1
Y=g 1101~ B eXp(SBLY,)}

— a0 upgR1Y 0By Y1F 262,

Yes= Y2Yd2! Y1, Yea=Yc2¥3! V1, Yes= Yaa¥2l2v1,

Ye6=Y3Ydal Y2,  Yer=SPB1Yda:

Yes=S?BTVaav1/472,
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