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An investigation has been made of modulational instability of a nonlinear ion acoustic wave in a weakly relativis-

tic warm unmagnetized nonthermal plasma whose constituents are an inertial ion fluid and nonthermally distributed

electrons. Up to the second order of the perturbation theory, a nonlinear Schrédinger type (NST) equation for the

complex amplitude of the perturbed ion density is obtained. The coefficients of this equation show that the relativistic

effect, the finite ion temperature and the nonthermal electrons modify the condition of the modulational stability. The

association between the small-wavenumber limit of the NST equation and the oscillatory solution of the Korteweg—de

Varies equation, obtained by a reductive perturbation theory, is satisfied.
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1. Introduction

The modulation of one-dimensional (1D) ion
acoustic waves (IAWSs) in an unmagnetized, collision-
free plasma in the finite-wavenumber region has re-
ceived a great deal of attention.!=4 These studies
have shown that the amplitude of the perturbed ion
density is governed by a nonlinear Schrodinger type
(NST) equation.

cerned with non-relativistic cold plasmas.’=7 For an

However, these studies were con-

envelope soliton, there has been a great deal of inter-
est in studying the modulational instability of different
wave modes in plasma, because of its importance in
stable wave propagation. Experimental observations
of the modulational instability of the monochromatic
IAW have been reported by Watanabe.!8! On the other
hand, most of the investigations of the propagation of
the nonlinear ion acoustic solitons have been devel-
oped on the basis of the reductive perturbation the-
ory. In this theory a set of coupled nonlinear partial
differential equations describing the system is reduced
to the Korteweg—de Varies (KdV) equation or to the
NST equation, depending on whether the system is a

weakly dispersive or strongly dispersive medium.
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Recently,using the reductive perturbation tech-
nique, Xue et all®! study the modulational instability
of the modulated TAW in a warm plasma. However,
this problem had been investigated by El-Labany!*
and El-Labany and El-Hanbaly!'®using the derivative

expansion method by Kawahara.!1!]

A few years ago, motivated by the observations
of solitary structures with density depletions. Cairns

and co-workers(12—14]

have considered a plasma con-
sisting of nonthermal electrons, with excess of ener-
getic particles and cold ions and have shown that it
is possible to obtain both positive (compressive) and

negative (rarefactive) solitary waves.

In this paper, we study the modulational instabil-
ity of the modulated weakly relativistic IAW in a colli-
sionless unmagnetized warm plasma with nonthermal
electrons, using the derivative expansion technique.lt
is organized as follows. In section 2 a weakly relativis-
tic NST equation is derived from the fluid equations
describing the system. In section 3 the stability anal-
ysis of this equation is investigated. In section 4 the
relationship between weakly relativistic ion modula-
tion modes in the small wavenumber region and in the

finite wavenumber region is investigated. In section 5
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a concluding discussion is presented and a comparison

with previous results is considered.
2.Basic equations and derivation
of the NST equation

Consider a simple weakly relativistic plasma
model that includes one warm ion species together
with nonthermal electrons. Also, we assume that the
plasma is unmagnetized, collisionless and ionization-
free. The one-dimensional basic equations can be writ-

ten in a non-dimensional form

on  0(nu)

at o O @)
<%+u%>(7u)+%%+%=0, (2)
<% + u%>p + 317% =0, (3)
T —n—n. (4)

ne = e?[L— (1 -v)(1 - ¢)g], (5)

where n and n. are the densities of the ions and
electrons respectively, u is the flow velocity of the
ions, p is the pressure, ¢ is the electrostatic potential,
. (1-a)
(14 30)

mal electrons in the present plasma model, x is the

determines the population of nonther-

space coordinate, t is the time variable and o < 1 is
the ratio of ion temperature T; to electron tempera-
ture T,. The relativistic factor is approximated by its
expansion up to the second term because of a weakly

relativistic effect,

u?
v R <1 + ﬁ) , (6)
where C is the velocity of light.

All physical quantities in Eqs.(1-5) as well as the
space and time variables have been rendered dimen-
sionless in terms of the following quantities: ion ther-
mal velocity = (kgT,/m)'/2, ion pressure = nokpT;,
the Debye length Ap = (kpT, /47 ezno)l/Q, a charac-
teristic potential (kgZe/e) and a characteristic time
(4me?ng/m)~'/2 (the inverse of the ion plasma fre-
quency; wp;=1), where kp is Boltzmann’s constant
and m is the ion mass.

According to the general method of the derivative

expansion,[*1! we introduce the stretched variables
7 = €'t (7a)

Ei=cl(x—At); (i=1,2,...),6 =1 (7b)

where the parameter A is the group velocity, to be
determined later; and the smallness parameter ¢ rep-
resents the size of the perturbed amplitude.

To derive the NST equation describing the prop-
agation of the nonlinear ion acoustic waves from the
basic equations (1-5), we expand all the quantities
asymptotically in the smallness parameter ¢ about

their equilibrium values

o0

G(z,t) =G, + Z e™

m—1

X Z G%)(Tl77—27---7£17£2a"')a (8)

L=—cc

where
GID) = (DD o),

Go=1[1 up10] and 0= kz — wt.

Here Gg,l;“) satisfies the reality condition G,(WI{) =
G*(—L)

m , where the asterisk denotes the com-

plex conjugate. The dependence on the scales

'7515‘52)"'

secular terms are eliminated.

T1, T2y is chosen in such a way that the

Substituting Egs.(7) into the basic equations (1-

5), we obtain, to first order in ¢ and L = 1 components
- (1)

ul’ = Zn", pY = 3yinf) and i = kglJr v’

(9)

3 2
where 1 = 1 + Lg, w = w — kupand the linear dis-

persion and the group velocity A are given respectively

by

2
A 2
MW =371k%0 + 15 e (10a)
Ao+ — 3o+ —2 ] (10b)
o wyq ne (k2 +v)2"

The L = 0 components of O (¢) give
(0)

ngo) = ngi) and (;5&0) M
Turning to O (¢2)of the reduced equations, we can ob-

tain, for L = 0 components,

oanl”  aul”  apl® a4l
9& 0& 96 96

_ =9V
v

(;550) =0 and gbéo) = ;

for L = 1 components,

angl) _ 1 w (1) 1w Bngl)
e R Sl L R A T
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ngl) i 2ik 8n§1) .
(k2 +v)  (k2+v)?2 9&

p§) =3ynf" and ¢! =

for . = 2 components,

ng) = (1+ Al)ngl)z’ ugz) _ %Alngl)z’

3 2
pi” = (241 + By)nf"

and (24 )
@ _ (241 = A3) )2
ER T R
where
(B2 —1) ~yuw? v yicH
A =1 1+ —
=t e T e ) T
9 N
Ay =2 —v — <£)g + 3710(1 +371)(k2 +v),
")k
g b [A437) (R +v) (k% +v) ’
v k2
2’)/2 W 3U0
Bi=1+3 T2VY and = ol
1 +’Yl+<%>k and 72 = 5

Equating terms of O (&%) in the set of equations (1-5),

we have for the L = 0 components,

()2 -
© _ (Ini "= Ci\[2@ (1 3yi0B:
Y2 = ( 7 k \v + 2 + B2,

(1))2 -
(0) _ | nl | — C]_ 2_w l 3’710’B1 Z B
Ny = <7Z5\ i\ + 2 + + b2,

1
©) :<|n§ >|~2_cl>
2 vAZ

2w (1  3y,0B
X [—w<—+ nex +Z>+Bz]
kE \v 2

| ni2
- v(k?+v)’
where
S\(k2—|—z/— [1/v]) <o W2
By = — 2y A2 —
2 (k2+l/)2 Y2 k2a

Z = v A2 = 3yi0 — (1/v), A= X—ug; and C; is a
constant of integration, independent of £;.

Using the first-and second-order solutions for the
L = 1 components of the set produced equations of
O (&%), the resonant terms leads to the non-secular

condition and the NST equation, as follows,

1 1
,an§ ) 32n§ )

1 1 1
S5Ot RO nl? @ nfl !

=0. (11)

The coefficients of the linear, dispersive and nonlinear

terms are given respectively by

k[P,
—2%5\[ (2 1) 3m10(2 3’)’131)}

k*Cy [271713 279
27197

k v (k2 +v)
. <<k2~+ = (1), Soten = 1))

A(k? + v)? A

—k2 Ak(k* +v) 1dA
B 12 S — 4y — -~
20 (1 3’)’10'31 BZ Q=—-R—-(Qh,
— -+ —+—= B
4k + 6A;v1k +4A — 371 Bk
_30{_% +64A1mn +2k172w V151 k3+672w3}
k3
3
K ‘”ZW% - +1%
= 2 1 3 2
@1 e —v1Ajw 2 — 2vw Tz )
v—4+4 —
v
+9 aA2+2A1+1_1_A2+2A1_ K2 +v
MO T e, T2 (k2 + )3

and

2 3
C2 = 32 + —w <]. + —"/10’I/B1> .
vk 2

(see Appendix A).
Equation (11) governs the evolution of the com-

plex amplitude of the nonlinear IAW in the finite-

wavenumber region, propagating in a weakly relativis-

tic warm plasma with nonthermal electrons.

3. Stability analysis

The sign of the dispersion coefficient @) charac-
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terizes the amplitude of the modulated TAWs defined
by the NST Eq. (11). The stability criterion of this
equation exhibits a modulational stability of the am-
plitude of the wave envelope if SQ < 0, and exhibits
a modulational instability if SQ > 0. We know that
the former case gives rise to a dark envelope soliton
and the latter gives a bright envelope soliton. How-
ever, the expressions of S and @) show that the stable
and unstable regions are modified due to the finite ion
temperature (o), relativistic effect (v, y2)and non-
thermal electron (v). Since S is always negative for
w > kug, one has to determine the value of the critical
wavenumber k¢ (o, 71, v)at which @ changes its sign.
Then, for all values of k£ < k¢, the wave has a mod-
ulational stability, while the modulational instability
occurs in the region k > kc. Applying the disper-
sion relation and after straightforward manipulation,

we can reduce the nonlinear coefficient in the form:

ZwkZ (10—1)

12’)’1’11}1/D(k‘2+”)

Q(Uv T,V ) (12)

where
D = 3(k* + v)(1 + y10k?) + (k*/v),

and w; (1 =1,2,...,10) is the weight of each term.
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Fig.1. The dependence of k¢ (in units of kp) on

the nonthermal parameter v for certain values of rel-
ativistic parameter ug/C = 0 (non-relativistic) and
0.2. k¢ first decreases rapidly then increases slowly
for higher values of v,as it approaches the isothermal

value (v = 1).

Figure 1 shows the dependence of k¢, in units of
kp, on the nonthermal parameter v. It is shown that
kg first decreases rapidly, then increases slowly for the
higher values of v. It is proved that as the ion temper-
ature o or the relativistic effect (up/C) increase, k¢
decreases; but the variation with the relativistic effect

is small.

4.0Oscillatory solution of the

KdV equation

In the small-wavenumber region, Eq. (11
to

) reduces

on)  3kbonY  3kBCy
— — n
or, 2 0 2 M
Gl L (13)
3kv2b ’

where

{1+3[1 +mov+ 3?4 }
a= - =
2 7 ([1/v] + 3y10) v

b=[2/v1(1 + 3y10v)] L.

(see Appendix A).

Applying the reductive perturbation theory, the
complex amplitude of the perturbed density in a
weakly relativistic warm plasma with nonthermal elec-
trons in the small-wavenumber limit is governed by the

KdV equation, which is given by:

bo%
2 963

On ) 2500 -0 (14)
or v o€ -

where 7 is the perturbed density, and 7 and £ are given
by
E= u%(:c—)\t) = ut.
Here p is the ordering parameter and the wavenumber
k=0 (uz).l4
To obtain an oscillatory solution of the KAV Eq.

(14), we follow El-Labany!*! and El-Labany and El-
Hanbaly, '] expanding (7 ) as

S $

m=1 _

Q)exp.[iL(k& — 67)], (15)

where the stretched variables p and ¢ are related to &
and 7 by

=e(¢—pr), (=¢'r (16)

The parameters § and § will be determined later. Sub-
stituting Eqgs.(15) and (16) into Eq.(14), we obtain the
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following reduced equation of order m:

ontk) | . o, i

—isLal) — g 8";— 8"2—2 - 5b(kL)%;f)
R e e
+ % :: Lgoo(L — LB L)

HEE WG w

The first-order terms (m = 1) with L = £1 lead to

the linear dispersion relation

The second-harmonic components of the second-order
terms of the reduced Eq. (17) gives
= (2) @ ~(1)?
g = gy
> 3wbk? Tt
while the components L. = +1 of this order lead to
the compatibility endurance condition for non-trivial

solution, i.e.
-3
= —bk>
h 2
The zeroth-harmonic components of the third-order
terms of the mth reduced equation are determined as

. (0) —2a

W) = 2l - )

where C is a constant independent of p.

Finally, the L = 1 terms of the third-order re-
duced equation give the NST equation (Eq.(13)). In
terms of the solution of this equation, the oscillatory

solution of Eq.(14) is expressed as

143
7 :gﬁgl){ qx — (uo + 1+ dmov
mn

S) )
t|,et
vy1[1 + 3yi0v]

143
X exp{ik: {x — <u0 + 1+ mov
1/")/1

v [1kj 3y10v] ) t] }

5. Conclusions

To verify our results, we can consider a special
case of a weakly relativistic warm plasma with isother-
mal electrons and then make comparisons with pub-

lished works. For v = 1(isothermal electrons), all the

coefficients in this work agree exactly with those ob-
tained by El-Labany.[!! Also, if we neglect the rela-
tivistic effect (put v = 1, 72 = 0), we can acquire
the result of Xue Ju-Kui et al Thus, this paper can
be considered as the generalization of the work done
by El-Labany*lwith the inclusion of nonthermal elec-
trons.

We conclude that, on the basis of the derivative
expansion method, the modulation of nonlinear IAW
in a weakly relativistic warm plasma with nonther-
mal electrons has been investigated. A NST equation
describing the evolution of the complex amplitude of
the perturbed ion density in the finite wavenumber
region is obtained. The coefficients of this equation
have been shown to be strongly dependent on the ion
temperature o, the ion streaming velocity (71, v2) and
the nonthermal parameter v. We can summarize these
effects as follows:

1. The critical wavenumber k¢ decreases as o
increases for fixed values of ion streaming, and also
ko decreases as the relativistic effect increases but its
variation with the latter is slightly slow.

2. The k¢ first decreases rapidly as v increases,
then it increases slowly as v increases. This means
there exists a critical nonthermal population of elec-
trons to sustain the system in the stable state.

Moreover, we have derived the relation between
the weakly relativistic ion modulation modes de-
scribed by the KAV equation in the small wavenumber
region and the NST equation in the finite wavenumber
region. The dispersion and the nonlinear coefficients
of the KdV equation are exactly the same as those
of the small wavenumber limit of the NST equation
derived in the finite wavenumber region. In addition,
the oscillatory solution of the KdV equation satisfies
the NST equation.

Appendix A

To evaluate the coefficients of the NST equation for small
k, we first calculate the different terms appearing in these coef-
ficients.

From Egs.(10), as k — 0, we have

1
<E> 3 <71+3”1"”> B
k V71

1] _ [V(kz +v)

thus

7 2 (k2v{3vy10(k% +v) + 1}

— (k% + 3v)(k* +v))‘1}

—2

RETCR
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where the square-bracket notation indicates that the quantity Thus the coefficients S, R and Q are given by
is evaluated at k — 0. Also

32 -1 1 4y2 W k? Ak 2
1 2 Bl=— ooz | v = +v)
[41] = + Sk*v + 6V(k) 31 ' )( +4k2) 2710 (k? +v)3 D
£ 10k (14 3 (R u><4k2 +v)}
2v k2 —1/2
3k 1 -3
1/2 z——{’Yl (—+371U>} = —kb,
~1 4+ 32 -1 n (14 3y10v) 4yo [ 14 3yiov 202 v 2
h 6k2v 602 73/2 v
1
( + 4k2)+ 2% kz{ k2 (1+371)V(5k2 +V)}7 [R] _ k202 2’71‘&) B 2’72
2v2 Zw k Y1V
9 .
[A2] =2 —v— %(%) +371U(k2+1/)] ) 2,
1 V2 —
o +§{ 3 +3710(371—1)}}
2 1+3
A2 37/22 <W> +3y10v(1 + 3m1), o
v
M N 3v2 -1  3yi0v
' = S 0 S (et
9 1
2 D 1+ 3 2
[B1] = 1+371+2<%>]z1+371+( Y10v) 7
1 v

(@)}

Mk2+v—-) /N2
[B2] 2 +0)? 2’)’2>\<—> ]
- 2 1 1 —1/2
zi(uz -1 -2 <1+3710y> [Ql]:<5> {’Yl<—+3’710>}
v3 RerZ! v

and w2 1 2\ 2 0
v — w Y2 W
2% [ 1 B X (kA1 +7| - 1-——
(o] = Tw<_ N M) B [ 27 k o
12 272 W ?
a(me) e (1, cana(an+ 222 )|
vm v 2 Y1
1/2
n 272 (M) >} 202 — 1 37101/ 143 3 1 22
7 » =\ 52 T (1+37) - 73/2 mo+ -~

1
2
1+ 3710'1/>

and [Q] = —[Q1] — [R] = [Q1]-
v 7vi

b
+—3(V2—1)—272<
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