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The nonlinear wave structure of small-amplitude electron-acoustic solitary wW&A&SWS is
investigated in a four-component plasma consisting of cold electron fluid, hot electrons obeying
vortex-like distribution traversed by a warm electron beam and stationary ions. The streaming
velocity of the beamu,, plays the dominant role in determining the roots of the linear dispersion
relation associated with the system. Using the reductive perturbation theory, the basic set of
equations is reduced to a modified Korteweg—de V(tie&dV) equation. With the inclusion of
higher-order nonlinearity, a linear inhomogeneous mKdV type equation with fifth-order dispersion
term is derived and the higher-order solution is obtained using a renormalization method. However,
both mKdV and mKdV-type solutions present a positive potential, which corresponds to a hole
(hump in the cold (hot) electron number density. The mKdV-type solution has a smaller energy
amplitude and a wider width than that of mKdV solution. The dependence of the energy amplitude,
the width, and the velocity on the system parameters is investigated. The findings of this
investigation are used to interpret the electrostatic solitary waves observed by the Geotail spacecraft
in the plasma sheet boundary layer of the Earth’'s magnetosphere.

© 2005 American Institute of PhysidDOI: 10.1063/1.1857528

I. INTRODUCTION noise(BEN) emissions. The associated electric field intensi-
) , ties of these BEN ranges are from fewV/m to
Electron-acoustic wave(EAWSs) have been of interest 100 mV/m’ 3 The observations of solitary waves in the

since their first description by Fried and Gohhwrmg NU- " quroral zone suggest that there are two classes of solitary

merical solutions of the linear electrostatic Vlasov dispersioqNaveS. the first kind is associated with electron beams and
quation_in an _u_nmagnetized and _homogenous pla_sma. Th?P(e other is associated with ion beatfisderein, the first
not|ce(_:l, in addition to th_e Langmuir and |on_-a(_:oust|c WaVeSyind will be focused. Solitary waves associated with electron
the existence of a heavily damped acoustic-like solution o eams were first observed by Geofait then by FAST?

the dispersion equation. Later, the EAW was discovere .
: 3. . o and later by Polar spacecrafts. The signature of these ob-
expenmentallﬁ' in unmagnetized plasma consisting of two . : : ) .
servations is found to display a nonlinear behavior. In par-

electron populations with different temperature and densityticular BEN is found to have wave forms of solitary bipolar

Th lations will referr “cold” and “hot” S . ) .
e o populations be referred as “cold” and "hot electric field pulses which are called electrostatic solitary

| 51t is f hat the EAW i lectro- o e .
© egtrons t.'s ognd that the 'S an acqust{e egtro . waves(ESWsg. The ESW widths in time are in range from a
statig wave in which the cold electrons provide the inertia, . - Ot .
fFW milliseconds to a few tens of millisecond®’ This time

and the restoring force comes from the pressure of the ho

electrons. The ions play the role of the neutralizing back-scale suggests that ESWs are related to electron dynamics

ground, i.e., the ion dynamics do not influence the EAWsrather than ions. The contribution of field-aligned electron

because the EAW frequency is much larger than the iorpeatmg LO tge Ee{\elr?}iorg)of high-{relqltéedncy S.Eegt;ﬁ was sug-

plasma frequency. The spectrum of the linear EAWs extendgesSted by market al. nsageet al.~ described the cor-

up to the cold electron plasma frequencys relation of BEN with the high-energy electron component in
pc

= (47N ,€2/ M) Y2, wheren,, is the unperturbed cold electron the absence of ion flows. It is also found that these solitary
number densitye is the magnitude of the electron charge, waves in the plasma sheet boundary IE’@.%BI‘? are eﬂhgr
andm, is the mass of the electrén. an electron hol¢éEH) or an EAW propagating with velocities

Study of the EAWs propagation plays an important roIeof a few thqusand km/s. They haye a one-dimensional %patial
not only in laboratory experiment but also in space plasmass_tructure with a very small electric field, about a feuW/m.

Satellite measurements in the auroral and other regions of thehese ESWs are excited by a bump-on-tail weak electron

magnetosphere have shown bursts of broadband electrostag@m instability that can form relatively small electrostatic
potentials moving with the electron beam. These electrostatic

dAuthor to whom correspondence should be addressed. Electronic maiF:)Otentlals are formed by hlgh-energy electrons in the nonlin-

eltaibany@hotmail.com ear stage of _elec}rlozn beam instabilities reproduced in com-
PElectronic mail: wmmoslem@hotmail.com puter simulation$!*? On the other hand, these electrostatic
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potentials are close to the Bernstein—Green—Krd8kBIGK) dispersion terms to interpret the observed BENSs that formed

equilibrium, formed the resonant and nonresonant plasmESWSs in the PSBL of the Earth’s magnetospheré.

screenings of bunched electrons trapped by a potential pulse This paper is organized as follows. In Sec. Il, we present

moving in a plasma’ % the basic set of fluid equations governing our plasma model.
Several theoretical attempts have been made to explaifhe nonlinear EAWSs are investigated through the derivation

the observed BENs in different regions of the Earth'sof a mKdV equation for the first-order perturbed potential

magnetospher&>2-22Berthomieret al studied electron- and linear inhomogeneous mKdV type equation for the

acoustic(EA) solitons in an electron-beam plasma systemsecond-order perturbed potential. In Sec. Ill, we apply the

with isothermal hot electrons. It was found that the introduc-renormalization methddl to obtain the stationary solutions

tion of an electron beam in such plasma allows the existencef these equations. Section 1V is devoted to the discussion

of new EA solitons with velocity related to the beam veloc- and the conclusion.

ity. Also, the second electron population modifies the topol-

ogy of the roots of the linear dispersion relation in the phase|. BASIC EQUATIONS

velocity space. Singh and Lakhfftastudied the generation . o )

of BEN by EAWs in a four-component unmagnetized Let us consider an infinite homogeneous, unmagnetized

plasma. They applied the linear theory to study the stability2nd collisionless plasma consisting of a mixture of cold elec-
and growth rate of the EAWS in three different regions of thetron fluid, hot electrons obeying a trapped/vortex-like distri-
Hution and stationary ions traversed by a warm electron

magnetosphere. Their study explained the features of BEN i ) ) ) ) i

the dayside auroral zone, PSBL, and polar cusp regions. be_am. The normalized one-dimensional basic equations are
On the other hand, in practice, the hot electrons may noy/nitten a$

follow a Maxwellian distribution due to the formation of an; :

phase space holes caused by the trapping of hot electrons in 5 + 5([”1"11] =0, 1)

a wave potential. Accordingly, in most space plasmas, the hot

electrons follow the trapped/vortex-like distributiot?’ The U du o b
electron trapping is observed not only in space plasmas, but El + Ujg(l +ap 3anjg(l v 0. 2

also in laboratory experiments?® Little attention has been

paid to study the EAWSs via vortex-like electron distribution. In Egs.(1) and(2), n; andu; (j=c for cold electron and

Mamun and Shukfamade the first attempt to study the non- b for electron beamare the densities and velocities of the

linear propagation of one-dimensional EAWSs in an unmag+two fluids. ¢ is the electric potentialx is the space coor-

netized plasma composed of a cold electron fluid, hot elecdinate, andt is the time variable. nj, u;, ¢, x, andt are

trons obeying a vortex-like distribution, and stationary ions.normalized to equilibrium densities;,, to EA speedCe,

It was shown that the amplitud@vidth) of the EAWSs in-  =(n.KgTh/NhoMe) ¥ to KgT,/€, to the hot electron Debye

creases(decreas@swith the trapped electron temperature. length Ap,=(KgTh/4mnn,€?)"% and to wg, respectively,

They applied their theoretical model to interpret the BENwhereKg is the Boltzmann constant. Also, we introduce the

emissions observed in the auroral day8ioé the Earth's following quantities

magnetosphere. However, this region mostly consists of a n

magnetized plasma with three-dimensional structure solitary — ap,=—°, ap=—>, y=(1+an+ap

waves:? Mo co
Since EAWSs can be excited by electron and laser beams,

the electron beams, in addition to the two electron popula- . = i 0.= Th 0,

tions are considered to be the main energy source for the . 91'72’ ¢ T

excitation of the wave mod€. When the beam energy IS In the presence of trapped particles, we employ a vortex-

sufficiently large, the nonlinear and dispersive effects ar§i e electron distribution of Schanf@i2* which solves the
competing to produce EAWS, which are stationary in their

comoving reference franf8. However, investigations of L L
small-amplitude EAWs are usually described by _ L e [Py

Korteweg—de VriegKdV) or modified KdV (mKdV) equa- i = \”Zexp{ Z(U 2¢)] ol > v2¢,

tions. These equations contain the lowest-order nonlinearity

and dispersion, and consequently can describe only waves of 1 1, —

small amplitude. If the wave amplitude or the width deviates ~ fnt= Tex - 5:3(0 —2¢)| [v[=v2¢,

significantly from the prediction of the Kd¥mKdV) equa- Nem

tion, the higher-order nonlinear and dispersion effects mustvhere |8|=(T,/ T,y (the ratio of the free hot electron tem-
be included to describe such waves accurately. For this engheratureT;, to the hot trapped electron temperatii§g. It is

the higher-order approximation of the reductive perturbatiorthe parameter determining the number of trapped elec-
theory has been known to be a powerful t%goOurobjective trons. v is the normalized hot electron velocity. The hot
here is to propose a four-component plasma model consistinglectron distribution functionf,=f,+f, IS continuous in

of cold electron fluid, hot electrons obeying a trapped/vortexvelocity space and satisfies the regularity requirements for an
like distribution, warm electron beam, and stationary ionsadmissible BGK solutiof’®’ It is obvious from this distri-
taking into account the effects of higher-order nonlinear andution that3=1 (8=0) represents a Maxwelliafflat-topped

:Eaz
Ty *

electron Vlasov equation, i.e.,
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distribution, whereas3<<0 represents a vortex-like exca-
vated trapped electron distribution. Integrating the distribu-
tion function over the velocity space, the hot electron num-

ber densityn, can be expressed f@<0 a$>?*
2 J—
Ny =1(¢) + —=—=Wp (V- B¢), (3a)
VBl

where I(x)=[1—erf(&)]exp(x) and  Wp(x)=exp(-x?)
x [3exp(y?)dy. Equation(3a) can be simplified to the form

Dispersion Relation Roots

np = exp(¢) — G(¢), (3b)
where  G(¢)=32[2K Db () @2/ [[(2k+1)],  be=(1 10 12 14 16 18 20 22 24 26 28
ere _ G(d) =S [2 V(9> 2M(2ke D). b=( .
-B9/Vm. This system of equations is closed by Poissons ()
equation _ _ . . .
FIG. 1. The dispersion relation roots againgtfor two different values of
6y, Wherea,=5, ,=0.33, ,=500.
ahyﬁ:nc+nh+nb—l. (4)

In order to study the dynamics of small-amplitude
EAWs, we employ the reductive perturbation technique  and Mamun and ShukfsAlthough Mamun and Shukiaon-
derive the evolution equation describing the system. FirstSideredA=1 for describing observed BEN in the auroral
we introduce the stretched coordindteg=s14(x—\t) and  daysidé of the Earth’s magnetosphere, EAWs propagate
=34, wheree is a small parameter and is the solitary ~ With & supersonic velocity; i.e., greater thag,” ™ In this
wave velocity to be determined later. The physical quantitiegnodel, the introduction of the warm electron beam with the
appearing in Eqg1)—(4), ¥=[ng,ny, Ny, Uc, Uy, $], are ex- inclusion of the temperature of each species changes the to-

panded as power seriesdrabout their equilibrium values as Pology of the root of Eq(7) and overcomes this discrepancy.
Figure 1 shows the dependency of the positive roots of Eq.

(7) on u, for two values of6,. It is obvious that\ increases
asu, increases. Singh and Lakh?rjlapredicted that the maxi-
mum growth rate of the EAWSs took place aj=2.2, after
where which Eq. (7) will admit three different wave velocities.
Moreover,\ is affected by, variation but it does not affect
significantly by 6. change. The parameters are chosen in this
The charge neutrality condition in the plasma is alwayspaper to compare our results with the observed ESW in the
maintained through the relation PSBL region of the Earth’'s magnetosphere. This region is
selected as the appropriate one because it contains mostly
electrostatic waves that has one-dimensional structttés.
Applying the stretched coordinates and the relati®s If we consider the next order i, we obtain a system of
to the basic set of Eq&l)—(4) and following the usual pro- equations in the second-order perturbed quantities. Solving
cedure of the reductive perturbation the?)]ryhe first-order  this system with the aid of Eq#6) and(7), we finally obtain
terms yield the mKdV equation

V=V + S e, (5)
r=1

l[lr = [nC1 Nh, Ny, Ug, Uy, ¢]T1 \P(O) = [nC01 Nho» nb0101u01 0]T

Ng = Neo+ Npo + Npg.

Ny ==Nidy, U =—ANighi/y, ~ ady 4 I Py
3 (6) K(¢1)¢1—E+§b1A Py +A0.)_§3_Oa (8)
Mp1 == Nap1, Upy=—AN2¢pr/eyy,
. ] . ] . . ~ where
and Poisson’s equation gives the linear dispersion relation
any=N;+N,, (7) A= an[2(N0ZyNy + N ZoNo) ]
where The second-order perturbed quantities can be calculated,
with the aid of Eq.(8), as
Ny =anbcyZ1,  Np= anapbhyZs, a
_ aby 5 & ¢1>
Z,= (0N2=3ap)™,  Z,= (6% - Bapad L Ne2 = Nl|: b2 2)\‘9czlA< 3~ 22 )| (99
N=N- Ug-
— 2
Equation(7) is a fourth-order algebraic equation ¥ Ueo = _(N1/7)[)\¢2+ (1-22%6.2y)
from which one can get the wave velocity From this equa-
tion, one can observe thatis independent oB and it agrees ><A<4—bl 3/2 52(1’1)} (9b)
exactly with that obtained previously by Berthomietr al* 37t 92 )]
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~ ab; 5 Py hand sidesv is not expanded, while on the right-hand side it
Np2 = = Np| 2 = 2N GpZoA 3 w2 )| (99)  is expanded, so that the, are determined successively to
cancel out the resonant term$. Then Eqgs(8) and(10) are
~ _ transformed to
Up2 = — (Nz/Yab)[)\d’z +(1 - 2\%6,Z,)

dpy 4b, 9% ¢ a¢
><A<—1 32, ¢21)} (@) T
3 43 and
For O(s?), we obtain a system of equations in the third- ~ ~ 1 ~ ~
order perturbed quantities. Solving this system with the aio‘gi52 + 2Ab13(¢1 ¢2) +A33¢32 + 51;%
of Egs.(6), (7), and(9), we finally obtain the linear inhomo- 97 2 23 2
geneous mKdVmKdV-type) equation for the second-order 0%
perturbed potentiad,: =S,(¢y) + Vl(y_gl. (13
~ d¢ d S
L(¢1) o= (9_72 + 2b1Aa—§(¢i/2¢2) +A¥32 The upper sign onp; and ¢, indicates the renormalization
variables.
P . .
= (4b2A%B + C)¢1ﬂ Let us introduce the variable
% n=é-(v+ 0, (14)
+AZB{% +b1[iu2&i§1&2—d;1 where the parameter is related to the Mach numbev
s 1 0E ¢ =V/Cop by?* 3
I Y L ST v+ Sv=M-1=AM. (15)
32 +4dy 3 ' (10)
2¢1°\ 9¢ 23 : . .
HereV is the soliton velocity.
where Equationg12) and(13) can be integrated with respect to

the variablen and using the vanishing boundary conditions

B= (A/a’h')’)[Nlaczl(l - 4)\29czl) ~ ~ . L
for ¢1(7n) and ¢,(7) and their derivatives up to second order

+ NabpZo(1 — 4N26,2,)], for |77 — o, yield
-~
C= (Nan)){Ni[1 + 3darZi(an +720,)] &6, (4_'%31/2_ z);ﬁl _o 6
~ d» 3 A ’
+ Nz[l + 30bahZ§(aha§ + )\Zﬁb)]}

Thus we have reduced the basic E(§—4) to a non- &%, ST ILAT T Y L de,
linear mKdV equation forp,, Eq. (8), and a linear inhomo- d7? *| 2011 A b2= N S(b) + 11 d d7.
geneous differential equation fak,, Eq. (10), for which the
source term, the right-hand side of E@0), is described by (17)
a known functiong;. The one-soliton solution of Eq16) is given by

bu(n) = b sect(mw), (18)

Ill. THE STATIONARY SOLUTION

H — 2 7 —1
In the preceding section, it has been shown that thdvhere the amplitudeby,=(15v/160,A)" and the widthw

higher-order approximations are given by mKdV, E§), ~4vAlv. Equation(18) permits a compressive soliton only.

and mKdV type, Eq(10), but these equations contain reso- This correqunds toa ho(eump in the cold(hof eE:ectron
nant terms that give rise to secular solutighg® So, to  nUmber density that agrees with Mamun and Shdkla.

eliminate this secular behavior, we adopt the renormalization USing the expressiofi8) for ¢,(7), the source term of
method®33 According to this method, Eq8) is added to  Ed- (17) becomes

Eq. (10) to yield 1 (7 N d<~i>

- o L A J Sy b)) + 1= |dy

K(gpdr+ 2 e"L(d) = 2 &S, 1y Al d

n=2 n=2
wheresS, represents the right-hand side of Efj0). We add = %{Z[Vﬁ v”Blsect(mw) + ¢ C secti(mw)}.
ng IP1 o~
> &"ov PY: Thus, to cancel out the resonant termsSji¢;), we have to
n=1
put

to both sides of Eq(11), wheredv is given by a power series v = - 7B. (19)

in &, dv=sv+edv+---, with coefficients to be determined
later. The crucial point in this procedure is that on the left-To solve Eq.(17), we define a new independent variable
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p=tanh(nw). (20)

Equation(17) thereby becomes

d d~ 42 |~
d—{(l ‘MZ)_¢2} + {5(5 +1) - 1 _M2}¢2

(15)4CV
~ 2(8b,A)

Higher-order nonlinearity of electron-acoustic solitary...

a1t ST A (21)
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-D
Lo(p) = (1 - u?)°.
2= o gagll TH)
Finally, we can obtain the solution of ER1)

~ ~ D 1
ba) = Pap(p) = g(l - Mz)z{l - 5(1 —,uz)] : (26)

In terms of the old variabley, the stationary solution for the

EAW is given by
The two independent solutions of the homogeneous part

of Eq. (21 are given by the associated Legendre functions of
the first and second kind:

P2(p) = 945u(1 - u?)?,

5 150 D
H(n) =y + bp= ( 6b1A> secH(nW)+gsecH(nW)

x[l —%secﬁ(nw)] (27)

'“) wherev and the modified width are given by

[ A 1
y=AM[1+BAM] andw =4 —[1——BAM].
AM 2

945 1
Qiu) =5 L= WP

96 24(1 + u?
— 63(8 — 25u% + 15u%) + 24

(1-ud) @-pd*’ . o .
Using the renormalization procedure, Tiwari and
and thus the complementary solution of E2{) is given by ~ Sharm&® studied ion acoustic waves in a plasma with two-
- temperature ions, and later Yashei al®* investigated the
oc = C1Pa(1) + CHQ5(w). (22)  same wave in an ion-beam plasma system. Because both of

the two systems contain isothermal electrons, the evaluation
guations are the standard KdV and KdV-type equations for
he first and second perturbed potential respectively. They
obtained a solution for the KdV-type equation similar to Eq.
(27). that nominated as “dressed soliton.” It was shown that
the dressed soliton has a very good agreement with the pre-
dicted exact solution than the solution of the KdV does.
23 Moreover, the present method can be extended to in-
clude theN-soliton case. Th&l-soliton solution of the renor-
malized mKdV equatior{8) and the renormalized linear in-
homogeneous equatigfi0) can be written as— « as®

Here the first term is the secular one, which can be elimi-
nated by renormalizing the amplitude. Also, the constan
C,=0 as a result of the vanishing boundary condition for
bo(7). as|y| —o

Using the method of variation of parameters, the particus-
lar solution of Eq.(21) can be written as

bop = La()Pe(1) + Lo()Qa(),

wherel; andL, are given by

" _T’(;ZL))V?/%(PAZ)QQ) " & %§_225 AMZ[1 + 2BAM;]
, (24) bS58, |
Lz(M):J a —T,L(L%)V}:\)/?g:?Qg) i, x sech(pw;),
where ?;52—>§ P062% AM[1 + 3BAM;]

= 49152h,A)*
(15°%Cs? = '

T(p) = 2(8b, A)4(1

2)3 - D(l _M2)3 1
x sech( ﬁwi)[l - Esecﬁ( 77Wi):| ,
and the WronskiaW is given by

dQ“ ,dP2 945X 348
Q5 e (25
du (1-u?
Substituting forPz and Q‘51 into Eq.(24) and carrying out the
integrations, we obtain

Wherewi'l is related to the velocity; of theith soliton by

o A 1 V,
=44/——|1->BAM;|; AM;=—--1.
AM;| T 2 Cea

W(PZ,Q) = P4

IV. DISCUSSION AND CONCLUSION

~ -D -315 sg, Ltu 1221
Law) = 945% 348 8 (1=w) Inl_M T M We have considered a four-component plasma model
consisting of a cold electron fluid, a warm electron beam, hot
+ 3335M3‘ 2529/; + 2079,“7 - 1785M9 electrons obeying a trapped/vortex-like distribution, and sta-
4 2 2 4 tionary ions. Using the reductive perturbation theory, we
315 studied the combined effects of electron beam and higher-
+ TMM], order nonlinearity on the nonlinear EAWSs. The basic set of
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fluid equations describing the system leads, at the lowes
order of perturbation theory, to a mKdV equation, E§).
The mKdV equation permits a compressive soliton only
which corresponds to a holaump in the cold(hot) electron
number density that agrees with Mamun and Sholgar a
better accuracy, the higher-order nonlinear and dispersio
terms have been included and the linear inhomogeneot
mKdV-type equation, Eq(10), with fifth-order dispersion
term is employed. The higher-order soluti®V) is obtained
using the renormalization method. Though it is predicted tha
the wave amplitude may increase and consequently the widt
decreases with the inclusion of higher-order nonlinedfity,
Fig. 2 contradicts this. It shows the variation of the predicted
energyE; (corresponding tap,) and E (corresponding tap
=?b1+552) againsty for different system parameter changes.
As mentioned in Sec. Il, the parameters chosen are corre

sponding to ESW observed in the PSBL of the
Earth’s magnetosphefe #2122 They |ead to Ap,
~192m. Using the formuf® E;=¢,(KgTh/€\pn)

= ¢1,(1000/192 V/m, the solution(18) can be transformed
into the energy wave form. A similar transformation is used
to transform}b to E. Figure 2 shows that ag, increases, the
amplitudeE, decreases but its width increases whatayger
> or <\. Also, the same effect can be observefif ay, or

6, increases. The case of three-component plasma, i.e., witl
out electron beam, corresponds to the higher amplitude an
the smaller width(thick curve in Fig. 2(e). However,E;’'s
are always compressive solitons that correspond to a hol
(hump in the cold(hot) electron number densifly represent
compressive solitons also but with negative energy tails. Ir

E (ﬂv/m)

0 o -D

0 D 3017

(0

Ey ¢ iV/m)

Fig. 2, two conditions must be fulfilled. According to the By (V/m)
principal rule of the reductive perturbation thedhthe fol- AN
lowing condition must be satisfied: 4

~ it /3\ \‘.‘\

|ib—2| <1. (28) 2R

% AT
Thus, the negative energy values appearing in Fid) a&re 55 _» o w1
correfponding to higher negative contribution'&j in the ®
total ¢». According to condition(28), these values are forbid-
den. Moreover, the second condition is that the width of bott B pV/m)
E; and E must be non-negative for the soliton existence. /zg_\
However, Omuraet al!®* considered the case that is //\

slower thany, in their numerical study of ESW in the PSBL.
Here both\> and <u, are considered here to cover a wide
range ofu,. For, A <u,, the amplitudeE decreases but its
width increases by increasing with the allowance of com-
pressive soliton only. Though, far>u,, E increases and its
width decreases by increasing the forbidden negative val-
ues in the energy tail Fig.(&) will disappear whem, comes

V4

-40 -20

®
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E (gv/m)

E (uV/m)

@

closer tox. Moreover, asg), ay,, or 6, increasesk decreases rig. 2. plot ofE, (a, ¢, e, g, ) andE (b, d, f, h, J againstz. In (@) a,

but its width increases as in the caseEBf On the other
hand, the contribution of), to ¢ is usually appeared as a

=0.33,6,=5.5,\=1.77,3=-0.75,u,=1.78(solid), 1.79(dashedq 1.8 (dot-
ted); (c) A=1.8,u,=1.74 (solid), 1.75 (dashedq 1.76 (dotted, 1.77 (thick
curve); () 6,=50a?, \=1.77,u,=1.8, @,=0.33(solid), 0.25(dasheg} 0.04

decrease inp; for any system parameter changes except fofdotted, no beam(thick curve; (g) a,=0.33, \=1.77, u,=1.8, 6,=6.06

@,<0.03171 where it increases;. Thus, it is obvious that (s0lid), 5.45(dashed| 4.95(dotted; (1) ay=0.33, 6,=5.5,A=1.77,,= 1.8,

=-0.8 (solid), —0.7(dashegl —0.6 (dotted, —0.5 (thick curve, the re-
. . . . . - ainder parameters in each graph are chosen & mith «.=5, 6.=500,
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terms modifies the EAWSs structures. The previous study oéter choice in(a, c, e, g, ), respectively.

the beam parameter changes significantly the ESW featur
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