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The nonlinear wave structure of small-amplitude electron-acoustic solitary wavessEASWsd is
investigated in a four-component plasma consisting of cold electron fluid, hot electrons obeying
vortex-like distribution traversed by a warm electron beam and stationary ions. The streaming
velocity of the beam,uo, plays the dominant role in determining the roots of the linear dispersion
relation associated with the system. Using the reductive perturbation theory, the basic set of
equations is reduced to a modified Korteweg–de VriessmKdVd equation. With the inclusion of
higher-order nonlinearity, a linear inhomogeneous mKdV type equation with fifth-order dispersion
term is derived and the higher-order solution is obtained using a renormalization method. However,
both mKdV and mKdV-type solutions present a positive potential, which corresponds to a hole
shumpd in the coldshotd electron number density. The mKdV-type solution has a smaller energy
amplitude and a wider width than that of mKdV solution. The dependence of the energy amplitude,
the width, and the velocity on the system parameters is investigated. The findings of this
investigation are used to interpret the electrostatic solitary waves observed by the Geotail spacecraft
in the plasma sheet boundary layer of the Earth’s magnetosphere.
© 2005 American Institute of Physics. fDOI: 10.1063/1.1857528g

I. INTRODUCTION

Electron-acoustic wavessEAWsd have been of interest
since their first description by Fried and Gould1 during nu-
merical solutions of the linear electrostatic Vlasov dispersion
equation in an unmagnetized and homogenous plasma. They
noticed, in addition to the Langmuir and ion-acoustic waves,
the existence of a heavily damped acoustic-like solution of
the dispersion equation. Later, the EAW was discovered
experimentally2,3 in unmagnetized plasma consisting of two
electron populations with different temperature and density.
The two populations will be referred as “cold” and “hot”
electrons.4,5 It is found that the EAW is an acousticselectro-
staticd wave in which the cold electrons provide the inertia,
and the restoring force comes from the pressure of the hot
electrons. The ions play the role of the neutralizing back-
ground, i.e., the ion dynamics do not influence the EAWs
because the EAW frequency is much larger than the ion
plasma frequency. The spectrum of the linear EAWs extends
up to the cold electron plasma frequencyvpc

=s4pncoe
2/med1/2, wherenco is the unperturbed cold electron

number density,e is the magnitude of the electron charge,
andme is the mass of the electron.6

Study of the EAWs propagation plays an important role
not only in laboratory experiment but also in space plasmas.
Satellite measurements in the auroral and other regions of the
magnetosphere have shown bursts of broadband electrostatic

noisesBENd emissions. The associated electric field intensi-
ties of these BEN ranges are from fewmV/m to
100 mV/m.7–13 The observations of solitary waves in the
auroral zone suggest that there are two classes of solitary
waves: the first kind is associated with electron beams and
the other is associated with ion beams.12 Herein, the first
kind will be focused. Solitary waves associated with electron
beams were first observed by Geotail,9–11 then by FAST12

and later by Polar13 spacecrafts. The signature of these ob-
servations is found to display a nonlinear behavior. In par-
ticular, BEN is found to have wave forms of solitary bipolar
electric field pulses which are called electrostatic solitary
wavessESWsd. The ESW widths in time are in range from a
few milliseconds to a few tens of milliseconds.9,10 This time
scale suggests that ESWs are related to electron dynamics
rather than ions. The contribution of field-aligned electron
beams to the generation of high-frequency spectra was sug-
gested by Parkset al.14 Onsageret al.15 described the cor-
relation of BEN with the high-energy electron component in
the absence of ion flows. It is also found that these solitary
waves in the plasma sheet boundary layersPSBLd are either
an electron holesEHd or an EAW propagating with velocities
of a few thousand km/s. They have a one-dimensional spatial
structure with a very small electric field, about a fewµV/m.9

These ESWs are excited by a bump-on-tail weak electron
beam instability that can form relatively small electrostatic
potentials moving with the electron beam. These electrostatic
potentials are formed by high-energy electrons in the nonlin-
ear stage of electron beam instabilities reproduced in com-
puter simulations.11,12 On the other hand, these electrostatic
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potentials are close to the Bernstein–Green–Kruskal16 sBGKd
equilibrium, formed the resonant and nonresonant plasma
screenings of bunched electrons trapped by a potential pulse
moving in a plasma.17–20

Several theoretical attempts have been made to explain
the observed BENs in different regions of the Earth’s
magnetosphere.4–15,21,22Berthomieret al.4 studied electron-
acousticsEAd solitons in an electron-beam plasma system
with isothermal hot electrons. It was found that the introduc-
tion of an electron beam in such plasma allows the existence
of new EA solitons with velocity related to the beam veloc-
ity. Also, the second electron population modifies the topol-
ogy of the roots of the linear dispersion relation in the phase
velocity space. Singh and Lakhina21 studied the generation
of BEN by EAWs in a four-component unmagnetized
plasma. They applied the linear theory to study the stability
and growth rate of the EAWs in three different regions of the
magnetosphere. Their study explained the features of BEN in
the dayside auroral zone, PSBL, and polar cusp regions.

On the other hand, in practice, the hot electrons may not
follow a Maxwellian distribution due to the formation of
phase space holes caused by the trapping of hot electrons in
a wave potential. Accordingly, in most space plasmas, the hot
electrons follow the trapped/vortex-like distribution.23,24The
electron trapping is observed not only in space plasmas, but
also in laboratory experiments.25,26 Little attention has been
paid to study the EAWs via vortex-like electron distribution.
Mamun and Shukla5 made the first attempt to study the non-
linear propagation of one-dimensional EAWs in an unmag-
netized plasma composed of a cold electron fluid, hot elec-
trons obeying a vortex-like distribution, and stationary ions.
It was shown that the amplitudeswidthd of the EAWs in-
creasessdecreasesd with the trapped electron temperature.
They applied their theoretical model to interpret the BEN
emissions observed in the auroral dayside8 of the Earth’s
magnetosphere. However, this region mostly consists of a
magnetized plasma with three-dimensional structure solitary
waves.12

Since EAWs can be excited by electron and laser beams,
the electron beams, in addition to the two electron popula-
tions are considered to be the main energy source for the
excitation of the wave mode.27 When the beam energy is
sufficiently large, the nonlinear and dispersive effects are
competing to produce EAWs, which are stationary in their
comoving reference frame.28 However, investigations of
small-amplitude EAWs are usually described by
Korteweg–de VriessKdVd or modified KdV smKdVd equa-
tions. These equations contain the lowest-order nonlinearity
and dispersion, and consequently can describe only waves of
small amplitude. If the wave amplitude or the width deviates
significantly from the prediction of the KdVsmKdVd equa-
tion, the higher-order nonlinear and dispersion effects must
be included to describe such waves accurately. For this end,
the higher-order approximation of the reductive perturbation
theory has been known to be a powerful tool.29 Our objective
here is to propose a four-component plasma model consisting
of cold electron fluid, hot electrons obeying a trapped/vortex-
like distribution, warm electron beam, and stationary ions
taking into account the effects of higher-order nonlinear and

dispersion terms to interpret the observed BENs that formed
ESWs in the PSBL of the Earth’s magnetosphere.9–11

This paper is organized as follows. In Sec. II, we present
the basic set of fluid equations governing our plasma model.
The nonlinear EAWs are investigated through the derivation
of a mKdV equation for the first-order perturbed potential
and linear inhomogeneous mKdV type equation for the
second-order perturbed potential. In Sec. III, we apply the
renormalization method30 to obtain the stationary solutions
of these equations. Section IV is devoted to the discussion
and the conclusion.

II. BASIC EQUATIONS

Let us consider an infinite homogeneous, unmagnetized
and collisionless plasma consisting of a mixture of cold elec-
tron fluid, hot electrons obeying a trapped/vortex-like distri-
bution and stationary ions traversed by a warm electron
beam. The normalized one-dimensional basic equations are
written as4

]nj

]t
+

]

]x
fnjujg = 0, s1d

]uj

]t
+ uj

]uj

]x
+ ahF3s jnj

]nj

]x
−

]f

]x
G = 0. s2d

In Eqs.s1d ands2d, nj anduj sj =c for cold electron and
b for electron beamd are the densities and velocities of the
two fluids. f is the electric potential,x is the space coor-
dinate, andt is the time variable. nj, uj, f, x, and t are
normalized to equilibrium densitiesnjo, to EA speedCea

=sncoKBTh/nhomed1/2, to KBTh/e, to the hot electron Debye
length lDh=sKBTh/4pnhoe

2d1/2, and to vpc
−1, respectively,

whereKB is the Boltzmann constant. Also, we introduce the
following quantities

ah =
nho

nco
, ab =

nbo

nco
, g = s1 + ah + abd−1,

s j =
1

u jg
2, uc =

Th

Tc
, ub =

Th

Tb
ab

2.

In the presence of trapped particles, we employ a vortex-
like electron distribution of Schamel23,24 which solves the
electron Vlasov equation, i.e.,

fhf =
1

Î2p
expF−

1

2
sv2 − 2fdG uvu . Î2f,

fht =
1

Î2p
expF−

1

2
bsv2 − 2fdG uvu ø Î2f,

where ubu=sTh/Thtd sthe ratio of the free hot electron tem-
peratureTh to the hot trapped electron temperatureThtd. It is
the parameter determining the number of trapped elec-
trons. v is the normalized hot electron velocity. The hot
electron distribution function,fh= fhf+ fht, is continuous in
velocity space and satisfies the regularity requirements for an
admissible BGK solution.16,17 It is obvious from this distri-
bution thatb=1 sb=0d represents a Maxwelliansflat-toppedd
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distribution, whereasb,0 represents a vortex-like exca-
vated trapped electron distribution. Integrating the distribu-
tion function over the velocity space, the hot electron num-
ber density,nh can be expressed forb,0 as23,24

nh = Isfd +
2

Îpubu
WDsÎ− bfd, s3ad

where Isxd=f1−erfsÎxdgexpsxd and WDsxd=exps−x2d
3e0

xexpsy2ddy. Equations3ad can be simplified to the form

nh = expsfd − Gsfd, s3bd

where Gsfd=ok=1
` f2sk+1dbksfds2k+1d/2/ps2k+1dg, bk=s1

−bkd /Îp. This system of equations is closed by Poissons
equation

ahg
]2f

]x2 = nc + nh + nb − 1. s4d

In order to study the dynamics of small-amplitude
EAWs, we employ the reductive perturbation technique31 to
derive the evolution equation describing the system. First,
we introduce the stretched coordinates23 j=«1/4sx−ltd and
t=«3/4t, where« is a small parameter andl is the solitary
wave velocity to be determined later. The physical quantities
appearing in Eqss1d–s4d, C;fnc,nh,nb,uc,ub,fg, are ex-
panded as power series in« about their equilibrium values as

C = Csod + o
r=1

`

«r+1/2Cr , s5d

where

Cr = fnc,nh,nb,uc,ub,fgT, Csod = fnco,nho,nbo,0,uo,0gT.

The charge neutrality condition in the plasma is always
maintained through the relation

no = nco + nho + nbo.

Applying the stretched coordinates and the relationss5d
to the basic set of Eqss1d–s4d and following the usual pro-
cedure of the reductive perturbation theory,31 the first-order
terms yield

nc1 = − N1f1, uc1 = − lN1f1/g,

s6d
nb1 = − N2f1, ub1 = − l̃N2f1/abg,

and Poisson’s equation gives the linear dispersion relation

ahg = N1 + N2, s7d

where

N1 = ahucgZ1, N2 = ahabubgZ2,

Z1 = sucl
2 − 3ahd−1, Z2 = subl̃2 − 3ahab

2d−1;

l̃ = l − uo.

Equations7d is a fourth-order algebraic equation inl,
from which one can get the wave velocityl. From this equa-
tion, one can observe thatl is independent ofb and it agrees
exactly with that obtained previously by Berthomieret al.4

and Mamun and Shukla.5 Although Mamun and Shukla5 con-
sideredl=1 for describing observed BEN in the auroral
dayside8 of the Earth’s magnetosphere, EAWs propagate
with a supersonic velocity; i.e., greater thanCea.

9–11 In this
model, the introduction of the warm electron beam with the
inclusion of the temperature of each species changes the to-
pology of the root of Eq.s7d and overcomes this discrepancy.
Figure 1 shows the dependency of the positive roots of Eq.
s7d on uo for two values ofub. It is obvious thatl increases
asuo increases. Singh and Lakhina21 predicted that the maxi-
mum growth rate of the EAWs took place atuo=2.2, after
which Eq. s7d will admit three different wave velocities.
Moreover,l is affected byub variation but it does not affect
significantly byuc change. The parameters are chosen in this
paper to compare our results with the observed ESW in the
PSBL region of the Earth’s magnetosphere. This region is
selected as the appropriate one because it contains mostly
electrostatic waves that has one-dimensional structures.9–11

If we consider the next order in«, we obtain a system of
equations in the second-order perturbed quantities. Solving
this system with the aid of Eqs.s6d ands7d, we finally obtain
the mKdV equation

K̃sf1df1 =
]f1

]t
+

4

3
b1A

]f1
3/2

]j
+ A

]3f1

]j3 = 0, s8d

where

A = ahgf2slucZ1N1 + l̃ubZ2N2dg−1.

The second-order perturbed quantities can be calculated,
with the aid of Eq.s8d, as

nc2 = − N1Ff2 − 2lucZ1AS4b1

3
f1

3/2 +
]2f1

]j2 DG , s9ad

uc2 = − sN1/gdFlf2 + s1 − 2l2ucZ1d

3AS4b1

3
f1

3/2 +
]2f1

]j2 DG , s9bd

FIG. 1. The dispersion relation roots againstuo for two different values of
ub, whereah=5, ab=0.33,uc=500.
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nb2 = − N2Ff2 − 2l̃ubZ2AS4b1

3
f1

3/2 +
]2f1

]j2 DG , s9cd

ub2 = − sN2/gabdFl̃f2 + s1 − 2l̃2ubZ2d

3AS4b1

3
f1

3/2 +
]2f1

]j2 DG . s9dd

For Os«2d, we obtain a system of equations in the third-
order perturbed quantities. Solving this system with the aid
of Eqs.s6d, s7d, ands9d, we finally obtain the linear inhomo-
geneous mKdVsmKdV-typed equation for the second-order
perturbed potentialf2:

L̃sf1df2 =
]f2

]t
+ 2b1A

]

]j
sf1

1/2f2d + A
]3f2

]j3

= s4b1
2A2B + Cdf1

]f1

]j

+ A2BH ]5f1

]j5 + b1F 3

f1
1/2

]f1

]j

]2f1

]j2

−
1

2f1
3/2S ]f1

]j
D3

+ 4f1
1/2S ]3f1

]j3 DGJ , s10d

where

B = sA/ahgdfN1ucZ1s1 − 4l2ucZ1d

+ N2ubZ2s1 − 4l̃2ubZ2dg,

C = sA/ahgdhN1f1 + 3ucahZ1
2sah + l2ucdg

+ N2f1 + 3ubahZ2
2sahab

2 + l̃2ubdgj.

Thus we have reduced the basic Eqs.s1d–s4d to a non-
linear mKdV equation forf1, Eq. s8d, and a linear inhomo-
geneous differential equation forf2, Eq. s10d, for which the
source term, the right-hand side of Eq.s10d, is described by
a known functionf1.

III. THE STATIONARY SOLUTION

In the preceding section, it has been shown that the
higher-order approximations are given by mKdV, Eq.s8d,
and mKdV type, Eq.s10d, but these equations contain reso-
nant terms that give rise to secular solutions.29–33 So, to
eliminate this secular behavior, we adopt the renormalization
method.31–33 According to this method, Eq.s8d is added to
Eq. s10d to yield

K̃sf1df1 + o
nù2

«nL̃sf1dfn = o
nù2

«nSn, s11d

whereS2 represents the right-hand side of Eq.s10d. We add

o
nù1

«ndn
]f1

]j

to both sides of Eq.s11d, wheredn is given by a power series
in «, dn=«n1+«2

2n+¯, with coefficients to be determined
later. The crucial point in this procedure is that on the left-

hand sidedn is not expanded, while on the right-hand side it
is expanded, so that thenn are determined successively to
cancel out the resonant term inSn. Then Eqs.s8d ands10d are
transformed to

]f̃1

]t
+

4b1

3
A

]f̃1
3/2

]j
+ A

]3f̃1

]j3 + dn
]f̃1

]j
= 0 s12d

and

]f̃2

]t
+ 2Ab1

]sf̃1
1/2f̃2d
]j

+ A
]3f̃2

]j3 + dn
]f̃2

]j

= S2sf̃1d + n1
]f̃1

]j
. s13d

The upper sign onf1 and f2 indicates the renormalization
variables.

Let us introduce the variable

h = j − sn + dndt, s14d

where the parametern is related to the Mach numberM
=V/Cea by32–34

n + dn = M − 1 =DM . s15d

HereV is the soliton velocity.
Equationss12d ands13d can be integrated with respect to

the variableh and using the vanishing boundary conditions
for f̃1shd andf̃2shd and their derivatives up to second order
for uhu→`, yield

d2f̃1

dh2 + S4b1

3
f̃1

1/2 −
n

A
Df̃1 = 0, s16d

d2f̃2

dh2 + S2b1f̃1
1/2 −

n

A
Df̃2 =

1

A
E

−`

h FS2sf̃1d + n1
df̃1

dh
Gdh.

s17d

The one-soliton solution of Eq.s16d is given by

f̃1shd = f1m sech4shwd, s18d

where the amplitudef1m=s15n /16b1Ad2 and the widthw−1

=4ÎA/n. Equations18d permits a compressive soliton only.
This corresponds to a holeshumpd in the coldshotd electron
number density that agrees with Mamun and Shukla.5

Using the expressions18d for f̃1shd, the source term of
Eq. s17d becomes

1

A
E

−`

h FS2sf̃1d + n1
df̃1

dh
Gdh

=
f1m

2A
h2fn1 + n2Bgsech4shwd + f1mC sech8shwdj.

Thus, to cancel out the resonant terms inS2sf̃1d, we have to
put

n1 = − n2B. s19d

To solve Eq.s17d, we define a new independent variable
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m = tanhshwd. s20d

Equations17d thereby becomes

d

dm
Hs1 − m2d

d

dm
f̃2J + H5s5 + 1d −

42

1 − m2Jf̃2

=
s15d4Cn3

2s8b1Ad4s1 − m2d3. s21d

The two independent solutions of the homogeneous part
of Eq. s21d are given by the associated Legendre functions of
the first and second kind:

P5
4smd = 945ms1 − m2d2,

Q5
4smd =

945

2
ms1 − m2d2 lns

1 + m

1 − m
d

− 63s8 − 25m2 + 15m4d +
96

s1 − m2d
+

24s1 + m2d
s1 − m2d2 ,

and thus the complementary solution of Eq.s21d is given by

f̃2c = C1P5
4smd + C2Q5

4smd. s22d

Here the first term is the secular one, which can be elimi-
nated by renormalizing the amplitude. Also, the constant
C2=0 as a result of the vanishing boundary condition for
f̃2shd. as uhu→`

Using the method of variation of parameters, the particu-
lar solution of Eq.s21d can be written as

f̃2p = L1smdP5
4smd + L2smdQ5

4smd, s23d

whereL1 andL2 are given by

L1smd = −E TsmdQ5
4smd

s1 − m2dWsP5
4,Q5

4d
dm,

s24d

L2smd =E TsmdP5
4smd

s1 − m2dWsP5
4,Q5

4d
dm,

where

Tsmd =
s15d4Cn3

2s8b1Ad4s1 − m2d3 = Ds1 − m2d3

and the WronskianW is given by

WsP5
4,Q5

4d = P5
4dQ5

4

dm
− Q5

4dP5
4

dm
=

9453 348

s1 − m2d
. s25d

Substituting forP5
4 andQ5

4 into Eq.s24d and carrying out the
integrations, we obtain

L1smd =
− D

9453 348
F− 315

8
s1 − m2d6 ln

1 + m

1 − m
−

1221

4
m

+
3335

4
m3 −

2529

2
m5 +

2079

2
m7 −

1785

4
m9

+
315

4
m11G ,

L2smd =
− D

123 348
s1 − m2d6.

Finally, we can obtain the solution of Eq.s21d

f̃2smd = f̃2psmd =
D

6
s1 − m2d2F1 −

1

2
s1 − m2dG . s26d

In terms of the old variableh, the stationary solution for the
EAW is given by

f̃shd = f̃1 + f̃2 = S 15n

16b1A
D2

sech4shwd +
D

6
sech4shwd

3F1 −
1

2
sech2shwdG , s27d

wheren and the modified width are given by

n = DMf1 + BDMg andw−1 = 4Î A

DM
F1 −

1

2
BDMG .

Using the renormalization procedure, Tiwari and
Sharma35 studied ion acoustic waves in a plasma with two-
temperature ions, and later Yashviret al.36 investigated the
same wave in an ion-beam plasma system. Because both of
the two systems contain isothermal electrons, the evaluation
equations are the standard KdV and KdV-type equations for
the first and second perturbed potential respectively. They
obtained a solution for the KdV-type equation similar to Eq.
s27d. that nominated as “dressed soliton.” It was shown that
the dressed soliton has a very good agreement with the pre-
dicted exact solution than the solution of the KdV does.

Moreover, the present method can be extended to in-
clude theN-soliton case. TheN-soliton solution of the renor-
malized mKdV equations8d and the renormalized linear in-
homogeneous equations10d can be written ast→` as30

f̃1 → o
i=1

N
225

256sb1Ad2DMi
2f1 + 2BDMig

3sech4shwid,

f̃2 → o
i=1

N
50625C

49152sb1Ad4DMi
3f1 + 3BDMig

3sech4shwidF1 −
1

2
sech2shwidG ,

wherewi
−1 is related to the velocityVi of the ith soliton by

wi
−1 = 4Î A

DMi
F1 −

1

2
BDMiG ; DMi =

Vi

Cea
− 1.

IV. DISCUSSION AND CONCLUSION

We have considered a four-component plasma model
consisting of a cold electron fluid, a warm electron beam, hot
electrons obeying a trapped/vortex-like distribution, and sta-
tionary ions. Using the reductive perturbation theory, we
studied the combined effects of electron beam and higher-
order nonlinearity on the nonlinear EAWs. The basic set of
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fluid equations describing the system leads, at the lowest
order of perturbation theory, to a mKdV equation, Eq.s8d.
The mKdV equation permits a compressive soliton only
which corresponds to a holeshumpd in the coldshotd electron
number density that agrees with Mamun and Shukla.5 For a
better accuracy, the higher-order nonlinear and dispersion
terms have been included and the linear inhomogeneous
mKdV-type equation, Eq.s10d, with fifth-order dispersion
term is employed. The higher-order solutions27d is obtained
using the renormalization method. Though it is predicted that
the wave amplitude may increase and consequently the width
decreases with the inclusion of higher-order nonlinearity,32,33

Fig. 2 contradicts this. It shows the variation of the predicted
energyE1 scorresponding tof̃1d andE scorresponding tof̃
=f̃1+f̃2d againsth for different system parameter changes.
As mentioned in Sec. II, the parameters chosen are corre-
sponding to ESW observed in the PSBL of the
Earth’s magnetosphere.9–11,14,15,21,22 They lead to lDh

.192 m. Using the formula5,8 E1=f1msKBTh/elDhd

.f1ms1000/192d V/m, the solutions18d can be transformed
into the energy wave form. A similar transformation is used
to transformf̃ to E. Figure 2 shows that asuo increases, the
amplitudeE1 decreases but its width increases whateveruo

. or ,l. Also, the same effect can be observed ifubu, ab, or
ub increases. The case of three-component plasma, i.e., with-
out electron beam, corresponds to the higher amplitude and
the smaller widthsthick curved in Fig. 2sed. However,E1’s
are always compressive solitons that correspond to a hole
shumpd in the coldshotd electron number densityE represent
compressive solitons also but with negative energy tails. In
Fig. 2, two conditions must be fulfilled. According to the
principal rule of the reductive perturbation theory,31 the fol-
lowing condition must be satisfied:

uf̃2u

uf̃1u
ø 1. s28d

Thus, the negative energy values appearing in Fig. 2sdd are
corresponding to higher negative contribution off̃2 in the
total f̃. According to conditions28d, these values are forbid-
den. Moreover, the second condition is that the width of both
E1 and E must be non-negative for the soliton existence.
However, Omuraet al.10,11 considered the case thatl is
slower thanuo in their numerical study of ESW in the PSBL.
Here bothl. and,uo are considered here to cover a wide
range ofuo. For, l,uo, the amplitudeE decreases but its
width increases by increasinguo with the allowance of com-
pressive soliton only. Though, forl.uo, E increases and its
width decreases by increasinguo, the forbidden negative val-
ues in the energy tail Fig. 2sdd will disappear whenuo comes
closer tol. Moreover, asubu, ab, or ub increases,E decreases
but its width increases as in the case ofE1. On the other
hand, the contribution off̃2 to f̃ is usually appeared as a
decrease inf̃1 for any system parameter changes except for
ab,0.03171 where it increasesf̃1. Thus, it is obvious that
the beam parameter changes significantly the ESW features.
Also, the inclusion of higher-order nonlinear and dispersion
terms modifies the EAWs structures. The previous study of

FIG. 2. Plot ofE1 sa, c, e, g, Id and E sb, d, f, h, Jd againsth. In sad ab

=0.33,ub=5.5,l=1.77,b=−0.75,uo=1.78ssolidd, 1.79sdashedd, 1.8 sdot-
tedd; scd l=1.8, uo=1.74 ssolidd, 1.75 sdashedd, 1.76 sdottedd, 1.77 sthick
curved; sed ub=50ab

2, l=1.77,uo=1.8,ab=0.33ssolidd, 0.25sdashedd, 0.04
sdottedd, no beamsthick curved; sgd ab=0.33, l=1.77, uo=1.8, ub=6.06
ssolidd, 5.45sdashedd, 4.95sdottedd; sId ab=0.33,ub=5.5, l=1.77,uo=1.8,
b=−0.8 ssolidd, 20.7sdashedd, 20.6 sdottedd, 20.5 sthick curved, the re-
mainder parameters in each graph are chosen as insad with ac=5, uc=500,
n=0.1. Figuressb, d, f, h, Jd show the variation ofE with the same param-
eter choice insa, c, e, g, Id, respectively.
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the ESWs observed in the PSBL showed that the associated
electric field is ranged from few microvolts per meter to
100 mV/m.9–11 Thus, our present model has a good agree-
ment with the Geotail registered data of the PSBL. More-
over, this model can be considered as a generalization of the
simple three-component plasma studied by Mamun and
Shukla5 by inclusion of the fluid temperatures, electron
beam, and the higher-order nonlinearity.
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