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The ionization source model is considered, for the first time, to study the combined effects of
trapped electrons, transverse perturbation, ion streaming velocity, and dust charge fluctuations on
the propagation of dust-ion-acoustic solitons in dusty plasmas. The solitary waves are investigated
through the derivation of the damped modified Kadomtsev–Petviashivili equation using the
reductive perturbation method. Conditions for the formation of solitons as well as their properties
are clearly explained. The relevance of our investigation to supernovae shells is also discussed.
© 2005 American Institute of Physics. fDOI: 10.1063/1.1897716g

I. INTRODUCTION

It is well known that dust particles are common in the
universe and they represent much of the solid matter in it.
Dust particles often contaminate fully ionized or partially
ionized gases and form so-called “dusty plasma,” which oc-
cur frequently in nature. In astrophysics, in the early 1930s,
dust was shown to be present in the interstellar clouds where
it appears as a selective absorption of stellar radiationsinter-
stellar reddeningd. Dust particles play a very important role
in the solar system, in cometary tails, in planetary rings, and
also in the evolution of the solar system from its solar nebula
to its present form. Dust particles are also found in environ-
ments such as production processes, flames, rocket exhausts,
and many laboratory experiments.1 The dust particles are of
micrometer or submicrometer size, and the mass of the dust
particles is very large. Due to the presence of such heavy
particles, the plasma normal mode could be modified. In par-
ticular, the ion-acoustic waves are one of the modified nor-
mal modes, which are called dust-ion-acousticsDIA d waves.
Shukla and Silin2 were the first to report theoretically the
existence of DIA waves in unmagnetized dusty plasmas. The
DIA waves have been experimentally observed in laboratory
experiment by Barkanet al.3 It was noted that in studying
collective effects involving charged dust particles in dusty
plasmas, one generally assumes that the dust grains behave
like point charges. In fact, the charges on the dust particles
are not constant, because the imbalance of electron current
and ion current flowing through the grain surface causes
charge fluctuation. On the other hand, one can consider dusty
plasma is always an open system because the currents of

electrons and ions flowing onto the dust grainssas well as the
energy flowsd should be maintained by external sources of
the plasma particles and the energy. The dissipation rate is
high. Therefore, there is a tendency to self-organization and
to formation of long-living nonlinear dissipative and coher-
ent structures in a plasma such as shock waves, solitons,
cavitons, collapsing cavities, etc.4 Both shocks and solitons
in dusty plasmas can be formed by different means. These
are not necessarily restricted to the mode excitation due to
instabilities, or an external forcing, but can also be a regular
collective process analogous to the shock wave generation in
gas dynamics. The anomalous dissipation in dusty plasmas,
which originates from the dust particles charging process,
makes possible existence of a new kind of shocks related to
this dissipation.5,6 In the absence of dissipationsor if the
dissipation is weak at the characteristic dynamical time
scales of the systemd the balance between nonlinear and dis-
persion effects can result in the formation of symmetrical
solitary waves—a soliton. Investigation of the anomalous
dissipation is especially interesting at the ion-acoustic time
scales. The charging processes at these time scales are usu-
ally not in equilibrium and, hence, the role of anomalous
dissipation might be crucial.5,7 So far, study of nonlinear
structures at ion-acoustic time scalessin dusty plasmad was
mostly related to shocks.5,6,8,9There has also been an experi-
mental investigation of DIA solitons.10 The first theoretical
study of DIA solitons in dusty plasmas11 used an approxima-
tion neglecting absorption and scattering of electrons and
ions by microparticles. These processes, resulting in the
anomalous dissipation, make the existence of “pure” steady-
state nonlinear structures impossible.12 Later, the influence of
the anomalous dissipation on DIA solitons was studied by
Popelet al.12 On the other hand, they investigated the evo-
lution of the solitonlike perturbations in dusty plasma, taking
into account the dissipation processes and trapped electrons.
It was found that the properties of the compressive solitons
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with the trapped electrons are very different from those with
the Boltzmann electrons. They related the possibility of ex-
istence of the solitons to the fact that in case of the presence
of trapped electrons the width of the region of the Mach
number sfor which soliton solution are possibled is much
wider than in the case of Boltzmann electrons. During its
evolution the soliton is slowed down. Thus in the case of
Boltzmann electrons, the soliton leaves the region of the
Mach number inherent in solitonsswhich is rather narrow for
the case of Boltzmann electronsd very soon, and the soliton
transforms to the shocklike perturbation. Consequently, for
the existence of the damped solitons the perturbation should
have an initial form, so that it would allow the presence of
both free and trapped electrons. Otherwise, there is a possi-
bility of an appearance of DIA shocks in dusty plasmas. El-
Labanyet al.13 studied the effects of trapped electron tem-
perature, dust charge variation, and grain radius on the
nonlinear DIA waves in dusty plasma having trapped elec-
trons. It has been shown that the nonlinear DIA waves damp
waves and these waves are governed by a damped modified
Korteweg–de Vries equation. It was found that only com-
pressive DIA solitons can propagate in dusty plasmas with
trapped electrons. The amplitude and the width of the soli-
tons depend mainly on the trapped electron temperature, dust
charge variations, and grain radius. The existence of the soli-
tons is independent of the trapped electron temperature. Fi-
nally, it is necessary to mention that the form of the initial
perturbation could be important from the viewpoint what we
want to observe, shocks or solitons. For example, both DIA
shocks9 and DIA solitons10 were observed in a double
plasma device at the Institute of Space and Astronautical
SciencesJapand. In both experiments the plasma conditions
were salmostd the same but the difference was in initial per-
turbation.

The aims of this paper are the following:sid determine
the condition when the existence ofsquasid steady-state soli-
tons is possible in case of a weak dissipation,sii d investigate
the combined effects of trapped electrons, transverse pertur-
bation, ion streaming velocity, dust charge fluctuations,
variation of the ion density, ion momentum dissipation, and
the source of plasma particles on the propagation character-
istics of the DIA solitons, andsiii d describe the DIA solitons
that may appear in supernovae shells.

This paper is organized as follows: The basic equations
governing the dynamics of the nonlinear DIA solitons are
presented in Sec. II. In Sec. III, the condition under which
the solitons can be formed is obtained. The evolution of the
nonlinear DIA solitons is described through the derivation of
the damped modified Kadomtsev–Petviashivili equation and
its approximate solution is obtained. In Sec. IV, the relevance
of our investigation to supernovae shell is discussed. Sec. V
is devoted to the conclusions.

II. MODEL

We consider fully ionized, collisionless, unmagnetized
dusty plasmas consisting of a mixture of warm positive ions,
warm negatively charged dust grains, and nonisothermal
electrons. In two dimensions, the basic equations describing

the propagation of the DIA solitons are given in dimension-
less variables as follows:

for positive ions,
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The positive ions, dust grains, and electrons are coupled
through Poisson’s equation,

aS ]2f

]x2 +
]2f

]y2 D + ni − Zd
s0dZdnd − ne = 0. s3d

In the dynamical system, some of the electrons are at-
tached to the dust grains to form the charged dust grains,
while some of the remaining electrons are bounced back and
forth in the potential well, lose energy continuously and, as a
result, become ultimately trapped electrons. However, to
consider the effect of trapped electrons the following in-
equality must be satisfied:12

tsol ù Lsol/vTe,

where tsol is the characteristic time of the soliton formation
andLsol is the soliton width. The magnitude oftsol is of the
order of a fewvpi

−1 swherevpi,e=Î4pe2ni,e/mi,e is the ion and
electron plasma frequencyd, the spatial scaleLsol is about
severallDe. Thus,Lsol/vTe,vpe

−1, and therefore the last in-
equality normally holds.12 In this case, the electron density is
defined from the Vlasov equation consisting of free and
trapped electrons. Following Schamel,14 the nonisothermal-
ity of the plasma is introduced through the electron densities
that have the normalized form

ne = 1 +f −
4

3
bf3/2 +

1

2
f2 + ¯ . s4d

Herebf=s1−bd /Îpg is a constant depending on the tempera-
ture parameters of resonant electronssboth free and trappedd,
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andbf=Tef/Tetg represents the ratio of the free electron tem-
peratureTef to the trapped electron temperatureTet.

Equationss1d–s4d are completed by the normalized dust
grain charging equation,15

dZd

dt
= − L1ne expsL3Zdd + L2nisF1 − F2L4Zdd, s5d

where

L1 = sne
s0drd

2/vpiZd
s0ddÎ8pTef/me,

L2 = sne
s0drd

2/vpiZd
s0ddÎ8pTi/mi ,

L3 = − se2Zd
s0d/CpTefd,

L4 = − se2Zd
s0d/CpTid,

F1suod =
Îp

4uo
s1 + 2uo

2derfsuod +
1

2
exps− uo

2d,

F2suod =
Îp

2uo
erfsuod.

In Eqs.s1d–s5d, ni, nd, andne are the densities of positive
ions, dust grains, and electrons, respectively.uq fq= i anddg
are the velocities of positive ions and dust grains, respec-
tively. f is the electrostatic potential,x and y are the space
coordinates, andt is the time variable.nch is the frequency of
ion recombination on dust particles,ni is the plasma ioniza-
tion frequency, andñ is the frequency characterizing a loss
in ion momentum due to recombination on dust particles
and Coulomb elastic collisions between ions and dusts.
sif=Ti /Tefg and sdf=Td/Tefg are the ratios of the tempera-
tures of positive ionsTi and dust grainsTd to the free elec-
tron temperatureTef. Zd denotes to the dust grain charge
number.mdf=md/mig is the ratio of the dust grain massmd to
the ion massmi. Cpf=rd exps−rd/lDdg is the capacitance of
the spherical dust grains.rd is the radius of the dust grains.
uof=vo/VTig is the ion streaming velocity,vo is the unnormal-
ized ion streaming velocity, andVTif=sTi /mid1/2g is the ion
thermal velocity. We normalized all physical quantities as
follows: The background electron densityne

s0d normalizes the
densities,uq by the ion-acoustic speedCsf=sTef/mid1/2g, f by
Tef/e, t by the inverse of the plasma frequencyvpi

−1, x andy
by the electron Debye lengthlDe=sTef/4pe2ni

s0dd1/2, nch, ni,
and ñ by the plasma frequencyvpi. Zd by the unperturbed
number of charges residing on the dust grainsZd

s0d. The
charge neutrality at equilibrium requires thatni

s0d=Zd
s0dnd

s0d

+ne
s0d, whereni

s0d and nd
s0d are the unperturbed ion and dust

number densities, respectively.

III. SOLITON EXISTENCE CONDITION
AND NONLINEAR ANALYSIS

Before going to nonlinear development, it is necessary to
clarify the condition under which the solitons can propagate
in dusty plasma. This condition could be derived from Pois-
son’s equation and the equation describing the dust particle

charging but in dimensional forms. When the soliton wave
structure has formed, the soliton widthDz is described by the
following theoretical estimate:

Dz

r
! 1, s6d

where r=sMuf0u /4pndndqdd1/3, z=x−Mt, Mf=V/Csg is the
Mach number,V is the soliton speed,f0 is the soliton am-
plitude,nd is the grain charging rate, and it was given in Ref.
4. When one uses the inequalitys6d it is important to deter-
mine which terms are more important, i.e., if one considers
some nonlinear structure and its characteristic widthDz!r,
then this nonlinear structure is soliton. Otherwise, if the char-
acteristic scale of the change of the parameters of the struc-
ture satisfies the inequalityDz@r then this nonlinear struc-
ture is expected to be shock wave.

To investigate the behavior of the small, but finite, am-
plitude DIA solitons in dusty plasma, we employ the stan-
dard reductive perturbation method.16 According to this
method, the independent variables are stretched as14,17

j = «1/4sx − ltd, h = «1/2y, t = «3/4lt, s7ad

where« is a smallness parameter measuring the weakness of
the nonlinearity andl is the wave speed normalized byCs.
The dependent variables are expanded as
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whereui,dy are given as
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s2d + ¯ . s7ed

We assume that the ion streaming velocity is along thex axis
only. Applying the relationss7ad–s7ed to the basic equations
s1d–s5d and following the usual procedure of the reductive
perturbation method, the lowest-order terms yieldswe have
assumed thatnch,«3/4ncho, ni ,«3/4nio and ñ,«3/4nod,
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and Poisson’s equation gives the following dispersion rela-
tion:

a

S
+

dZd
s0d2

G
+

dRZd
s0d

F
+

adQZd
s0d

FS
= 1, s8cd

where
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R= − L1 − L1L3 − 1
2L1L3

2, Q = F1L2 − F2L2L4,

F = − L1L3 − L1L3
2 − F2L2L4a, S= l1

2 − 2sia,

G = l2md − 2sdd, l1 = l − uixo.

If we consider the next order in«, we obtain a system of
equations in the second-order perturbed quantities as
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Differentiating Eq.s9fd with respect toj and inserting
Eqs. s8d and s9ad–s9ed, we obtain the following damped
modified Kadomtsev–PetviashivilisDMKPd equation as
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To obtain the solution of Eq.s10d we introduce the variable

x = ,j + mh − Ut, s11d

where x is the transformed coordinates with respect to a
frame moving with velocityU. , and m are the directional
cosine of the wave vectork along thej andh axes, respec-
tively, so that,2+m2=1. Equations10d can be integrated,
with respect to the variablex and using the vanishing bound-
ary condition forfs1d and their derivatives up to second order
for uxu→`, we obtain the time evolution solitary wave form
approximate solution as

f = He−s1/2dACt sech4ÎBsHe−s1/2dACtd1/2

15
x, s12d

wheref;fs1d. To obtain the value ofH, let C=0 in Eq.s10d
and then its solution is given by

f = S 15h̄

8AB,2D2

sech4Î h̄

8aA,4x̄, s13d

where x̄ is the transformed coordinates with respect to a

frame moving with velocityŪ at C=0 si.e., for C=0; x

→ x̄, andU→ Ūd. h̄=Ū,− 1
2ADs1−,2d. From Eqs.s12d and

s13d it is clear thatH=s15h̄/8AB,2d2. Therefore, Eq.s13d
can be rewritten as

f = fo sech4sx/vd, s14d

where the amplitudefo and the widthv are given by

s15h̄/8AB,2d2es−1/2dACt and Îs8aA,4/ h̄dÎes1/2dACt, respec-
tively. From Eq.s14d, it is clear that stable solitary waves
exist only whenv is real.A, C, andt are always positive but

FIG. 1. Graph ofv vs , for a=1.2, d=0.01,ne=103, Zd=20, l=1.35, rd

=1.2310−13, Ti =0.02, Tef=0.2, Tet=0.4, Td=0.01, uixo=0.5, ncho

=0.000 12,nio=0.000 09,no=0.000 16, andt=3.

FIG. 2. Graph ofv vs uixo, a=1.2, d=0.01, ne=103, Zd=20, ,=0.5, rd

=1.2310−13, Ti =0.02, Tef=0.2, Tet=0.4, Td=0.01, ncho=0.000 12, nio

=0.000 09,no=0.000 16, andt=3; s—d for l=1, s---d for l=1.2, ands¯¯d
for l=1.5.
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h̄ may be negative. To beh̄.0 the following condition must
satisfy:

,

1 − ,2 .
AD

2Ū
. s15d

From the last condition, it is clear that the existence of soli-
tary waves requires a necessary condition depending on,, A,
andD. Also, one can notice that forA=0 the soliton cannot
exist. On the other hand, whenl=lc=s2aTi /Tefd1/2 or
s2dTd/Tefmdd1/2 the value ofS or G equals zero and thenA
=0.

IV. DISCUSSION

Now, one may ask to what extent the fluid equations that
were used are applicable to experimental situations or space
plasma observations? At the beginning, we have assumed
that the system under investigation is a fully ionized, weakly
coupled, three-component dusty plasma consisting of warm
variational charged dust grains, warm positive ions, and
nonisothermal electrons. Also, we have neglected the effect
of gravity. Fully ionized means that there are no neutrals in
the plasma. The term dusty plasma means thatd/lD,1,
whered is the intergrain distance between dust particles and
lD is the dust plasma Debye radius.15 Weakly coupled means
that the coupling parameterG!1. To neglect the effect of
gravity the dust particle sizessrdd should not be more than
1 mm. Actually, we have an example that achieves these four
conditions: sid there are no neutrals,sii d d/lD,1, siii d G

!1, andsivd rd,1 mm: Mendis18 cleared that the superno-
vae shells are one of the space plasma observations which
satisfy the last four conditions. The typical plasma parameter
values are ne=103 cm−3, Tef=0.2 eV, nd=10 cm−3, rd

=0.01mm, Zd=20. However, the other parameters were not
given in Ref. 18. So, these values are supposed to investigate
their effects on the behavior of the solitons. From the data we
can calculate the value ofa=1.2 andd=0.01.

Before going to investigate the soliton behavior that may
appear in the supernovae shells, it is important to check the
validity of the inequalitys6d for the supernovae shells plasma
parameters. Actually, it is found that the ratioDz /r is of the
order 10−2. Therefore, the inequalitys6d is well satisfied and
the nonlinear structure in the supernovae shells is expected to
be soliton.

The behavior of the soliton widthv is displayed in Figs.
1–4. Figure 1 shows the dependence ofv on ,. It is clear
thatv decreases with,; from ,=0.289 to 0.4 but it increases
from ,=0.4 to 1, while the values of,,0.289 gives unstable
solitons due to the conditions15d. From Fig. 2, it is clear that
v decreases withuixo at different values ofl. The lower limit
of l can be calculated from Eq.s8cd. For certain values ofl
there are only some specific values ofuixo that cannot be
exceeded. It is obvious also that whenuixo increases the
width does not decrease rapidly. Figure 3 clears the relation
betweenv and ncho sniod. It is seen thatv increasessde-
creasesd with ncho sniod. From Fig. 4, it is noticed thatv
increases withno andt.

The behavior of the soliton amplitudefo is displayed in
Figs. 5–9. It is obvious from Fig. 5 thatfo increases with,;
from ,=0.289 to 0.6 but it decreases from,=0.6 to 1. From
Fig. 6, we can see thatfo increases very slowly withuixo but
at certain values ofuixo it goes up suddenly. Figure 7 clears
thatfo increases withb. The amplitude increases slowly for

FIG. 3. Graph ofv vs ncho, a=1.2, d=0.01, ne=103, Zd=20, ,=0.5, rd

=1.2310−13, Ti =0.02, Tef=0.2, Tet=0.4, Td=0.05, uixo=0.5, l=1.35, no

=0.000 16, andt=3; s—d for nio=0.000 01, s----d for nio=0.0001, and
s¯¯d for nio=0.0025.

FIG. 4. Graph ofv vs no, a=1.2, d=0.01,ne=103, Zd=20, ,=0.5, rd=1.2
310−13, Ti =0.02, Tef=0.2, Tet=0.4, Td=0.05, uixo=0.5, l=1.35, nio

=0.000 12, andno=0.000 09;s—d for t=1, s----d for t=2, ands¯¯d for
t=3.

FIG. 5. Graph offo vs ,. The parameters are the same as those of Fig. 1.

FIG. 6. Graph offo vs uixo. s—d for l=0.9, s---d for l=1.3, ands¯¯d for
l=1.5. The parameters are the same as those of Fig. 2.
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negativeb but it increases rapidly for positiveb. From Figs.
8 and 9, it is clear thatfo decreases withncho, no, andt but
it increases withnio.

Now, it is important to clarify that we have studied the
soliton which has a following characteristic property; it is a
coherent pulse whose shape and speed are not altered by a
collision with other solitons.19 This property is inherent in all
solitons.

It is interesting also to compare the one-dimensional
s1Dd case results of Popelet al.12 with 2D case results pre-
sents here. For 1D case, Popelet al.12 cleared that the per-
turbation amplitude decreases with time. This result agrees
with our investigationssee Fig. 9d. However, for 1D case the
value of , equals unity while for 2D case,, varies from
0.289 to 1. On the other hand, our model clarifies that the
wave cannot propagate for any directions but in the direc-
tions that satisfy Eq.s15d only. This result could not be ob-
tained for 1D case. Thus, we can consider this study as a
modification and generalization of previous work.

V. CONCLUSIONS

In this paper, we have investigated two-dimensional DIA
solitons in collisionless, unmagnetized three-component
dusty plasmas, consisting of negatively charged dust grains,
positive ions, and trapped electrons. The reductive perturba-
tion method was used to reduce the basic set of fluid equa-
tions to DMKP, Eq.s10d. The exact solution of this equation
is not possible so we obtain its time evolution solitary wave
form approximate solutions14d. We can conclude that the

existence of solitons requires a necessary condition depend-
ing on ,, A, D, as well asl. We have referred to the super-
novae shells as an application to our study and it is found
that the soliton widthsamplituded decreasessincreasesd for
lower values of, and increasessdecreasesd for higher values
of ,. The soliton widthsamplituded decreasessincreasesd
with uixo. The soliton width increases withncho, no, andt but
it decreases withnio. The soliton amplitude decreasessin-
creasesd with ncho, no, andt sb andniod.

Although we have referred to the supernovae shells as an
application to our study, the present analysis is applicable to
other experimental situations or space plasma observations
that achieve the four conditionssid there are no neutrals,sii d
d/lD,1, siii d G!1, andsivd rd,1 mm and also satisfy the
inequality s6d.
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FIG. 9. Graph offo vs no. s—d for t=1, s----d for t=2, ands¯¯d for t
=3. The parameters are the same as those of Fig. 4.

FIG. 7. Graph offo vs b for a=1.2, d=0.01,ne=103, Zd=20, l=1.35, rd

=1.2310−13, Ti =0.02, Tef=0.2, Td=0.01, ,=0.5, uixo=0.5, ncho=0.000 12,
nio=0.000 09,no=0.000 16, andt=3.

FIG. 8. Graph offo vs ncho. s—d for nio=0.000 01,s----d for nio=0.0001,
and s¯¯d for nio=0.001. The parameters are the same as those of Fig. 3.
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