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The effect of nonthermal ions and variable dust charge on small-amplitude nonlinear dust-acoustic
�DA� waves is investigated. It is found that both compressive and rarefactive solitons exist and
depend on the nonthermal parameter a. Using a reductive perturbation theory, a Zakharov–
Kuznetsov �ZK� equation is derived. At critical value of a, ac, a modified ZK equation with third-
and fourth-order nonlinearities, is obtained. Depending on a, the solution of the evolution equation
reveals whether there is coexistence of both compressive and rarefactive solitary waves or double
layers �DLs� with the possibility of their two kinds. In addition, for certain plasma parameters, the
solitary wave disappears and a DL is expected. The variation of dust charge number, wave velocity,
and soliton amplitude and its width against system parameters is investigated for the DA solitary
waves. It is shown that the incorporation of both the adiabatic dust-charge variation and the
nonthermal distributed ions modifies significantly the nature of DA solitary waves and DA DLs. The
findings of this investigation may be useful in understanding the ion acceleration mechanisms close
to the Moon and also enhances our knowledge on pickup ions around unmagnetized bodies, such as
comets, Mars, and Venus. © 2005 American Institute of Physics. �DOI: 10.1063/1.1985987�

I. INTRODUCTION

There has been a rapidly growing interest in dusty
plasma physics not only because of dust being an omnipres-
ent ingredient of our universe, but also because of its vital
role in understanding different collective processes �mode
modification, new eigenmodes, coherent structures, etc.� in
astrophysical and space environments as well as in labora-
tory plasmas.1 The consideration of charged dust grains in
plasma does not only modify the existing plasma-wave spec-
tra, but also introduces a number of new novel eigenmodes.
One of these new eigenmodes are the dust-acoustic �DA�
waves.2,3

Highly charged massive dust grains presented in plasma
may exhibit charge fluctuations in response to certain types
of oscillations incorporated to the plasma.4 It has been shown
that the dust-charge variation affects the characteristic collec-
tive motion of the plasmas.5 Therefore, it is important to
study the effect of dust-charge variation on the nature of DA
solitary waves. The consequent modifications in the collec-
tive properties of dusty plasma in response to the variation of
charge were studied for various plasma systems. For ex-
ample, Xie et al.6 derived DA solitons with varying dust
charges and showed that only the rarefactive solitary waves
exist when the Mach number lies within an appropriate re-
gime depending on the system parameters. Moreover, the
DA solitary waves and double layers �DLs� in dusty plasma
with variable dust charge and two-temperature ions were
studied by Xie et al.7 They have shown that both compres-
sive and rarefactive solitons as well as DLs exist. Also, the
amplitudes of the DA solitary waves become smaller and the

regime of the Mach number is extended wider for the vari-
able dust-charge situation compared to the constant dust-
charge situation. Later, El-Labany and El-Taibany8,9 and El-
Labany et al.10 studied the DA waves under the combined
effects of arbitrary streaming-ion beam, trapped ion distribu-
tion, two-temperature ion, dust-charge fluctuation, and dust
fluid temperature in unmagnetized dusty plasmas. It is found
that owing to the departure from the Boltzmann ion distribu-
tion to the trapped ion distribution, the dynamics of DA
waves is governed by a modified Korteweg–de Vries equa-
tion. This equation admits a stationary DA solitary wave so-
lution, which has stronger nonlinearity, smaller amplitude,
wider width, and higher propagation velocity than the case
when the adiabatic ions are involved. The effect of two-
temperature ion is found to provide the possibility for the
coexistence of rarefactive and compressive DA solitary
structure and DLs. Although the dust fluid temperature in-
creases the soliton amplitude, the dust-charge fluctuation
does the opposite effect.

However, observations of space plasmas indicate the
presence of nonthermal ion populations. Nonthermal ions
from the Earth’s bow shock have been observed by the Vela
satellite,11 as well as in and around the Earth’s foreshock.12

The automatic space plasma experiment with a rotating ana-
lyzer �ASPERA� on the Phobos satellite has detected non-
thermal ion fluxes from the upper ionosphere of Mars.13

Closer to the Earth, fast nonthermal ions have been recently
observed by the Nozomi satellite in the vicinity of the
Moon.14 It appeared from the observations that the nonther-
mal ions have a partial ring structure in the velocity phase
space. The mechanism suggested for the formation of a par-
tial ring structure for nonthermal ions is that some of the
solar wind ions are deflected in the close vicinity of the
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Moon. Such deflected ions have large velocities �the bulk
velocity of the solar wind� and they move by the force of the
electric field and gyrate about the magnetic lines.14 Cairns et
al.15 have considered a plasma consisting of nonthermal
electrons, with the excess of energetic particles and cold
ions, and have shown that it is possible to obtain both posi-
tive �compressive� and negative �rarefactive� solitary waves.
Later, Mamun16 studied the instability of obliquely propagat-
ing DA solitary waves in a magnetized nonthermal dusty
plasma. He used the small-k perturbation expansion17 to
study the instability through the Zakharov–Kuznetsov �ZK�
equation describing the plasma system.

Zhang and Xue18 investigated the combined effects of
the adiabatic dust-charge variation and nonthermal ions on
DA solitary structures in magnetized dusty plasmas using
ion-charging current similar to that corresponding to the
Boltzmann-distributed ones, which are not appropriate to de-
scribe the dust charging process in the presence of nonther-
mal ion. Ghosh et al.19 studied the properties of one-
dimensional nonlinear DA wave in magnetized dusty
plasmas with variable charges, neglecting the nonthermal
ions. Later, Ghosh et al.20 presented, for the first time, the
appropriate ion-charging current based on the orbit-motion-
limited �OML� approach.1,4,21 Depending on the nonthermal
parameter, they stated that there is a growth of the DA wave
instead of the usual damping. Using the reductive perturba-
tion method,22 Zhang and Xue23 derived a Korteweg–de
Vries–Burger equation governing the dust-acoustic shock
wave. They studied numerically the effect of the external
magnetized field, nonadiabatic dust-charge fluctuation, and
nonthermally distributed ions on DA shock wave in dusty
plasmas.

Most studies used charging currents independent of the
magnetic field,23,24 assuming that the dust grain radius is
much smaller than the electron gyroradius. For a plasma
laboratory that uses weak magnetic fields, this condition may
be appropriate. However, the charging of dust grains in a
magnetic field has been investigated in connection with the
charging of satellites and rockets in Earth’s ionosphere and
magnetosphere.4,25 The presence of an external magnetic
field makes a dusty plasma anisotropic, i.e., charging cur-
rents to a spherical dust grain is different in different direc-
tions. However, in the presence of a very strong magnetic
field, the orbits of the magnetized plasma particles are con-
fined to one dimension along the field lines, as if they are
“glued” to the magnetic-field lines. Hence, the perturbed
field does not come into play, and the problem of charging
currents becomes independent of the magnetic field.26 Tsy-
tovich et al.27 cleared that when the magnetic field becomes
larger than a critical value �about 4 kG�, the electron gyro-
radius equal the electron collection radius on dust grains.
Only fast-magnetized electrons would be involved in the
charging process, while a fraction of low-energy electrons
would be reflected backwards along the magnetic-field direc-
tion. Hence, the cross section for magnetized electrons is
changed, resulting in the lowering of the electron current by
a factor of 4 compared to that in the absence of a magnetic
field. In addition, at this value of the magnetic-field strength,
the ion gyroradius is still much larger than the ion dust at-

traction size, the ions will be attracted to the dust grain with
approximately the same rate, and the ion current on the grain
will then remain the same as in an unmagnetized plasma. For
a much stronger magnetic field in the plasma, the ion gyro-
radius becomes smaller than the dust size. Here, both the
electron and ion currents are modified due to the strong mag-
netization of the plasma particles. Tsytovich et al.27 treated
numerically the problem of much stronger magnetic field
with variational charged dusty plasma and reported the de-
pendence of dust charge on the external magnetic-field
strength as well as on the parameter �̄=��i�, where �
=Ti /Te, �i=mi /me, and mi /me�Ti /Te� is the ion-to-electron
mass �temperature� ratio. They found that the dust charge in
a strong magnetic field could be substantially larger �up to 12
times� than that in the absence of the magnetic field �or in a
weak magnetic field�. Later, Salimullah et al.26 used the ki-
netic theory to examine the currents of electrons and ions to
a spherical dust grain in a uniform strongly magnetized dusty
plasma. They found that the external magnetic field reduces
the charging current, thereby decreasing the dust-charge fluc-
tuation damping of a low-frequency electrostatic wave in a
dusty plasma.

On the other hand, Zakharov and Kuznetsov28 made the
first attempt to model a soliton in a magnetized three-
dimensional system. They obtained a three-dimensional dif-
ferential equation, which is known as the ZK equation. Ma-
mun et al.29 investigated the properties of the
multidimensional electrostatic solitary waves in magnetized
nonthermal dusty plasmas, but they did not consider the
dust-charge variation. Recently, El-Labany et al.30 studied
the contribution of higher-order nonlinearity to nonlinear DA
solitary waves in warm magnetized three-component dusty
plasmas comprised of variational charged dust grains, iso-
thermal ions, and electrons. Considering the response of the
charging currents to the ambient magnetic field, they have
reduced the basic set of fluid equations to the coupled-ZK-
and ZK-type equations. Our objective in this paper is to
study, qualitatively, the propagation characteristics of nonlin-
ear DA waves in a collisionless, three-component magne-
tized dusty plasma consisting of warm variational charged
dust grains, nonthermal ions, and isothermal electrons.

The paper is organized as follows. The basic equations
describing the dusty plasma system under consideration, in-
corporating the contribution from the variable dust charge,
are given in Sec. II. In Sec. III, the dependence of the dust
charge on the plasma parameters, especially the relation of
the dust-charge variation to the plasma potential, is obtained
using the current balance condition. In Sec. IV, using a re-
ductive perturbation technique,22 the DA solitary structures
are studied with the inclusion of a number of important ef-
fects such as adiabatic variation of dust grain charges and
nonthermal ions. In Sec. V critical cases for the system are
discussed and a modified ZK equation with third-order
fourth-order, and mixed nonlinearities is obtained. Their so-
lutions are also discussed. Section VI is devoted to the con-
clusion.
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II. BASIC EQUATIONS

The dusty plasma, we are studying, consists of three
components: extremely massive-highly negatively charged
dust grains, isothermal electrons, and nonthermal ions, in the
presence of an external magnetic field B=Box̂. Charge neu-
trality at equilibrium reads

nio = neo + Zdondo, �1�

where nio, neo, and ndo are the unperturbed ion, electron and
dust number densities, respectively, and Zdo is the unper-
turbed number of charges residing in the dust grain and mea-
sured in units of the electron charge.

For three-dimensional low-frequency DA motions, we
have the following nondimensional equations:30

�nd

�t
+ � . �ndud� = 0, �2�

�ud

�t
+ �ud . � �ud − Zd � � + Zd�ud � �x̂� +

5

3

�

nd
1/3 � nd = 0,

�3�

�2� = Zdnd + ne − ni, �4�

where nj and ud refer to the number density of the jth species
�j=e for electrons, i for ions, d for dust� and fluid velocity of
the dust grain, respectively. The densities of electrons and
ions are normalized by Zdono, the dust grain density is nor-
malized by no, and Zd is normalized by Zdo. The space coor-
dinates �x ,y ,z�, time t, dust-cyclotron frequency �, velocity
ud, and electrostatic potential � are normalized by the Debye
length �Dd= �Teff /4�Zdondoe2�1/2, the inverse dust plasma fre-
quency 	pd

−1= �md /4�Zdo
2 ndoe2�1/2, 	pd, the DA speed Cd

= �ZdoTeff /md�1/2, and Teff /e, respectively, where Teff

= �ZdondoTiTe / �nioTe+neoTi��. Because of the negation of the
electron inertia, the electron density is governed by the
Boltzmann distribution as

ne =
neo

Zdondo
exp��s�� = 
 exp��s�� , �5�

where s−1=Ti /Teff=
�+�, �=nio /Zdondo, and 

=neo /Zdondo. Also, we define �=Td /ZdoTeff.

As the ions are assumed to be nonthermally
distributed,15 a possible three-dimensional equilibrium-state
ion velocity distribution function satisfying the collisionless
Vlasov equation with a population of fast �energetic� particle
is given by

Fi��i� = Fi��x,�y,�z�

=
nio

�1 + 3a�
1

�2�Vti
2�3/2�1 + 4a� �x

2

2Vti
2 + s��2	

� exp�− � �x
2 + �y

2 + �z
2

2Vti
2 + s��	 , �6�

where a is the ion nonthermal parameter which determines
the number of fast �energetic� ions, vx, vy, and vz are the x ,y
and z components of the ion velocity vi, and Vti

2 =�Ti /mi is
the ion thermal velocity. The steady-state one-dimensional

ion velocity distribution with a population of fast ion �with
vx=vi and �=0� can be obtained by the integration of the
distribution function �6� over the velocities vy and vz.

15 Fur-
thermore, if one puts a=0, one can reach the steady-state
Maxwellian ion distribution function. For a nonzero poten-
tial, the integration of the distribution function, �6�, will give
the following ion number density:15

ni =
 Fi��i�d3�i = ��1 +
4as��1 + s��

1 + 3a
	exp�− s�� . �7�

III. CHARGING OF DUST GRAINS

Dust particles are charged due to a variety of processes
including the bombardment of the dust grain surface by
background plasma electrons, ions and incident ion beams,
photoelectron emission by UV radiation, ion sputtering,
secondary-electron production, etc.1 In low-temperature plas-
mas, dust particles are mainly negatively charged particles
when any plasma electrons hitting the surface of the dust
grains are attached to it and simply lost from the background
plasma.1 In this paper we use the orbital-motion-limited
�OML� approach1,4,21 to describe the charging of the dust
grains. The electron and ion currents to the dust grains are
given by

Ij = qj

Rj

�sj�� j,�d�� jFj�� j�d3� j , �8�

where Rj is the domain of integration in the j-species veloc-
ity space, �sj =�r2�1−2qj�d /mjv j

2� is the effective dust grain
collisional cross section, qj is the electric charge of the

j-species of the plasma particles, �d=qd / C̃ is the dust sur-
face potential relative to the plasma potential �, qd is the

dust charge, and C̃ is the capacitance of the spherical dust
grain of average radius r.1

As it is assumed that the electrons are Maxwellian, sub-
stituting the Maxwellian velocity distribution of electrons in
�8� and then integrating, for spherical dust grains with radius
r, we get the following expression for electron current:1,6,8

Ie = − e�r2�8Te/�me�1/2neo exp�s��� + ��� . �9�

Similarly substituting �6� into �8� and then integrating, we
get the following expression for ion current:20

Ii = e�r2�8Ti/�mi�1/2 nio

�1 + 3a�
exp�− �s����1 +

24a

5
�

+
4as�

3
�4 + 3s�� − s���1 +

8a

5
�

+
4as�

3
�2 + 3s��	�	 , �10�

where �=e�d /Teff=−Zde2 / C̃Teff �at equilibrium Zd=Zdo and

�o=−Zdoe2 / C̃Teff�. In Eq. �10�, the parameter a arises due to
the effect of nonthermal ions �putting a=0, we get the usual
expression of ion current1,6,8 for Maxwellian ions�. Hence, it
is clear that the nonthermal ions also modify the ion current.
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Here, we will focus on the case of adiabatic dust-charge
variation in which 	pd
ch �dust charging frequency�; 
ch

=−���Ii+ Ie� /�Qd� /eZd at equilibrium, where Qd is the dust-
charge variable that can be determined through the charge-
current balance equation1,4

�Qd

�t
+ �ud . � �Qd = Ie + Ii. �11�

Here, the magnetic field is strong enough; larger than the
critical field at which the electron gyroradius equal the elec-
tron collection radius on dust grains �i.e., the electron current
decreases by a factor 4 compared to that in the absence of a
magnetic field�, and the ion gyroradius is still much larger
than the ion dust attraction size �i.e., the ion current on the
grain will remain the same as in an unmagnetized plasma�.
So, the reduction of the electron current means a decrease of
the dust charge.26,27,30

It is noticed also that the characteristic time for dust
motion is of the order of tens of milliseconds for micrometer-
sized grains,3 while the dust charging time is typically of the
order of 10−8 s. Therefore, on the hydrodynamic time scale,
the dust charge can quickly reach local equilibrium, at which
the currents from the electrons and ions to the dust are bal-
anced. The current balance equation reads1,30

Ieo

4
+ Iio  0.

Using Eqs. �9� and �10�, the last equation becomes

exp s��� + �� =
�� exp − �s��

1 + 3a
��1 +

24a

5
�

+
4as�

3
�4 + 3s�� − s���1 +

8a

5
�

+
4as�

3
�2 + 3s��	� , �12�

with �o=���=0� given as

�o =
1

s�
ln� ��

1 + 3a
��1 +

24a

5
� − s�o��1 +

8a

5
�	�� ,

�13�

where �= �� /�i�1/2 and �=4nio /neo. It is obvious that the
dust charge is very sensitive to the small disturbance of �.
This point is very important for explaining how the variable
dust charge influences the shape of solitons and solitary
waves. Obviously, Eqs. �12� and �13� are complicated tran-
scendental equations that include strongly nonlinear terms,
and their numerical solutions will lead to the normalized dust
charges Zd=� /�o. Figures 1 and 2 show that Zd decreases
as the nonthermal parameter a increases, but it requires an
extra potential to reach its stable value. Also, Zd increases as
� increases. For small � values, Zd increases slightly as a
increases, though it increases very rapidly to reach a higher
Zd for larger � values. As presented in the recent studies,6,9

there is a maximum value of �, �max, after which the system
does not permit a positive Zd, i.e., negative charge of the dust
particles. Figure 3 shows the variation of �max against a. �max

decreases rapidly for small a values, thereafter it decreases
gradually for higher a values. In addition, �max decreases as
� increases, which agrees exactly with previous studies.6,9

However, Ghosh et al.20 proved that the DA waves will suf-
fer amplitude growth when a�15�1+�� / �8−72��. For �
=0.1, this condition will lead to a�20.625, which is not
allowable because 0�a�1.15 This declares why a damping
dust charge is obtained here by increasing a. On the other
hand, if one uses the usual magnetic-independent charging
currents18,24 �which is appropriate for plasma laboratory
only�, one will get a dust charge number Zd larger than that
plotted in Fig. 1 with approximately the same profile �not
shown�.

IV. DUST-ACOUSTIC „DA… WAVES

In order to study the dynamics of small-amplitude DA
solitary waves in the presence of adiabatic variation of dust
charges, we derive an evolution equation from Eqs. �2�–�5�,
employing a reductive perturbation technique22 and introduc-
ing the stretched coordinates17 X=�1/2�x−�t�, Y =�1/2y, Z
=�1/2z, and T=�3/2t, where � is a small parameter that mea-
sures the size of the perturbation amplitude and � is the

FIG. 1. Zd is plotted against � for different a values, where �=10 and �
=0.1.

FIG. 2. Zd is plotted against a for different � values, where �=40 and �
=10.
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solitary wave velocity normalized by Cd. The plasma param-
eters ���nd ,ni ,ne ,udx ,� ,Zd� can be expanded as a power
series in � as

� = �
i=0

�

�i�i,

with �ndo ,nio ,neo ,udxo ,�o ,Zdo�= �1,� ,
 ,0 ,0 ,1�, while uy,z

are expanded as

udy,z = �
�=2

�

���+1�/2udy,z�−1.

Substituting these expansions into Eqs. �2�–�5�, using �
=�oZd in Eq. �12�, and collecting terms of different powers
of �, in the lowest order we obtain

nd1 = − R�1,

udx1 = − �R�1,

udy1 = − ��2R/�����1/�Z� ,

�14�
udz1 = ��2/R�����1/�Y� ,

Zd1 = �1�1,

R = ��2 − 5
3��−1;

and Poisson’s equation gives the linear dispersion relation

� =�5�

3
+ �4��1 + 3a� + ��1 − a�

�4� + ���1 + 3a�
+ �1	−1

, �15�

where

�1 =
�b

�o�a
, �a = 1 +

8a

5
+ ��1 − s�o −

8a

5
�− 3 + s�o�	 ,

�b = �1 + ���− 1 + s�o� +
8a

15
�1 − 2s�o + 3��− 3 + s�o�� .

It is clear that the linear wave velocity is independent of
the magnetic field, �. Considering both the two cases with/
without dust-charge fluctuation inclusion, Figs. 4 and 5 show
the variation of � against a for different � and � values. It is

obvious that, with the inclusion of dust-charge variation, �
increases as a increases, but it decreases as � or � increases.
In the case of constant dust-charge variation, � increases as �
increases, however, it decreases as � increases. Generally,
the effect of dust-charge variation appears to decrease the
wave velocity whatever the changes occur in a, �, or �.

For the next order in �, we obtain a system of equations
in the second-order perturbed quantities. Solving this system
with the aid of �14�, we finally obtain the ZK equation,

��1

�T
+ A�1

��1

�X
+ B� �3�1

�X�Y2 +
�3�1

�X�Z2� + C
�3�1

�X3 = 0,

�16�

where

A = C�3R�1 − 2�2 + s2�� − 
�2� − R3�3�2 −
5�

9
�	 ,

B = C�1 + ��2R

�
�2	 ,

FIG. 3. �max is plotted against a for different � values with �=10. FIG. 4. � is plotted against a for different � values, where �=0.25, and �
=0.001. The lower three curves correspond to varying dust charge, the upper
three �dashed curves� are for the same � values with constant dust charge.

FIG. 5. � is plotted against a for different � values, where �=10, and �
=0.001. The lower three curves correspond to varying dust charge, the upper
three �dashed curves� are for the same � values with constant dust charge.
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C = �2�R2�−1.

Using Eqs. �12� and �13�, the second-order perturbed dust-
charge number Zd2 is given by

Zd2 = �1�2 + �2�1
2, �17�

where

�2 =
�c

�o�a
, �c = �c1 + �c2 + �c3,

�c1 =
s

30
�15�− 1 + �2��− 1 + s�o�

+ 8a�4 − 8s�o + 3�2�− 3 + s�o��� ,

�c2 =
s�1�o

15
�8a�− 2 + 3�2�− 3 + s�o��

+ 15�1 + �2�− 1 + s�o��� ,

�c3 =
s���1�o�2

10
�− 5 + 5s�o + 8a�− 3 + s�o�� .

To find the stationary solution of Eq. �16�, we substitute
�= lxX+ lyY + lzZ−uoT into Eq. �16�, where lx, ly, and lz are
the directional cosine of the wave vector k along the X, Y,
and Z axes, respectively, so that lx

2+ ly
2+ lz

2=1. Integrating
twice and using the boundary conditions

�1��� → 0,
d�1���

d�
→ 0,

d2�1���
d�2 → 0 as ��� → � ,

�18�

the soliton solution of Eq. �16� is given by

�1 = �1mSech2��/W� , �19�

where �1m=3uo / �Alx� is the amplitude, W=�8D /uo is the
width, and D= �lx /2���lx

2+ ly
2�B+ lx

2C�. From the expression of
�1m and W, it is clear that as uo increases, the soliton ampli-
tude increases but the width decreases. Figures 6–9 show the
variation of the width W and the soliton amplitude �1m cor-

responding to system parameter variations. Figure 6 shows
that, in case of dust-charge variation, W increases as a in-
creases. The same effect can be observed for the constant
dust charge, although W increases very rapidly for larger a
values. The increase of magnetic field decreases W, however,
it has no effect on the soliton amplitude. The nonlinear vio-
lence of W with lx variation is presented in Fig. 7. For small
a values, W increases/decreases for lx�0.7/ lx�0.7. As a
becomes higher, this behavior will change to a continuous
increase for all lx values. Moreover, the dust-charge variation
appeared to decrease the soliton width. The soliton solution,
�19�, permits either rarefactive or compressive soliton pass-
ing through a critical point �will be discussed in Sec. V�.
Figure 8 investigates the variation of the compressive soliton
amplitude �1mc due to system parameter variation. �1mc in-
creases as � increases. For small �, ���10�, �1mc decreases
very rapidly, then as � increases, �1mc will have approxi-
mately a constant amplitude until � becomes closer to �max,
at which point it turns to increase again. On the other hand,
Fig. 9 concerns the rarefactive soliton. It shows that the am-
plitude, �1mr, decreases very rapidly as � increases, however,
near �max it turns to increase strictly. With respect to the
constant dust-charge plasma, �1mr decreases continuously as
� increases. Considering dust-charge variation, �1mr in-
creases as � increases for small � values, but for ��30, the
effect of � will be reversed. Although the dust-charge fluc-
tuation will increase �1mc, �1mr will have a different re-
sponse relative to the � range under consideration �Fig. 9�.

V. CRITICAL CASES

The propagation of compressive and rarefactive solitons
depends on the sign of the nonlinear coefficient of the ZK
equation, A, Eq. �16�. Thus, the DA waves are compressive/
rarefactive if A�0/A�0. This transition occurred through
critical points. It can be proven that the dispersion coeffi-
cients of the ZK equation are always positive, and thus the
presence of this critical behavior is due to the amplitude
itself. When the nonthermal parameter a reaches a critical
nonthermal parameter ac, the nonlinear coefficient of the ZK
equation vanishes, A=0, and the ZK equation fails to de-

FIG. 6. W is plotted against a for different � values, where �=10, �=0.1,
�=0.001, lx=0.75, and uo=0.1. The solid curve corresponds to constant dust
charge.

FIG. 7. W is plotted against lx for different a values, where �=10, �=0.1,
�=0.001, �=0.2, and uo=0.1. The solid curve corresponds to constant dust
charge.
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scribe the system in this case. This behavior can be observed
also at a critical phase velocity, �c, however, our concern will
be focused on the former. Figure 10 shows the critical be-
havior of the soliton amplitude corresponding to two cases;
constant and varying dust-charge variation. Figure 11 shows
the dependence of ac on � and � variation; ac increases as �
increases. For ��20/��20, ac decreases/increases as � in-
creases. The effect of dust-charge variation appeared to in-
crease ac �Figs. 10 and 11�.

For describing the evolution of the system at these criti-
cal situations, one has to seek another equation suitable for
describing the evolution of the system. This implies that the
stretching coordinates mentioned before are not valid for this
critical case, thus we will introduce a new stretching,
namely,8,17 X=��x−�t�, Y =�y, Z=�z, and T=�3t, and ex-
pand

udy,z = �
�=2

�

��udy,z�−1,

keeping the expansion of the remainder dependent variables
as before. Substituting into Eqs. �2�–�5� and using �=�oZd

into Eq. �12�, then collecting terms in different powers of �,
we obtain the same relations as �14� for the lowest order of �
�coefficient of �2�, and for the order of �3, we get

nd2 = − R��2 +
�1

2

2
��1 + R2�5�

9
− 3�2�	� , �20a�

udx2 = − �R��2 +
�1

2

2
��1 − R2�25�

9
+ �2�	� , �20b�

udy2 =
− �2R

�
� ��2

�Z
+

�

�

�2�1

�X�Y
−

40�R2

9
�1

��1

�Z
� , �20c�

udz2 =
− �2R

�
�−

��2

�Y
+

�

�

�2�1

�X�Z
+

40�R2

9
�1

��1

�Y
� . �20d�

If we consider the next order in �, we obtain a system of
equations which can be solved, with the aid of �14�, �17�, and
�20�, to give the following evolution equation, modified ZK
equation;

��1

�T
+ A

��1�2

�X
+ B� �3�1

�X�Y2 +
�3�1

�X�Z2� + C
�3�1

�X3 + E�1
2��1

�X

= 0, �21�

where

FIG. 8. �1mc is plotted against � for different � values considering both
varying and constant dust charge, where a=0.7, lx=0.75, �=0.001, and uo

=0.1.

FIG. 9. �1mr is plotted against � for different � values considering both
varying and constant dust charge, where the figure legend and the remainder
system parameters are the same as in Fig. 8.

FIG. 10. �1m is plotted against a considering both varying and constant dust
charge, where �=10, �=0.1, �=0.001, lx=0.75, and uo=0.1.

FIG. 11. ac is plotted against � for different � values where lx=0.75, �
=0.001, and uo=0.1. The solid curve corresponds to the constant dust
charge.
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E = − C�3�3 − 4R�2 −
3

2
�1

2R + �1R3�9�2 −
5�

3
�

+
s3

2
�
�3 +

��1 + 15a�
�1 + 3a� 	 −

5R5

2
�3�4 +

58

27
�2�

−
5

81
�2�� .

Using Eqs. �12� and �13�, the third-order perturbed dust-
charge number Zd3 can be given by

Zd3 = �1�3 + 2�2�1�2 + �3�1
3, �22�

with

�3 =
�d

�o�a
, �d = �d1 + �d2 + �d3 + �d4 + �d5 + �d6,

�d1 =
s2

30
�5�1 + �3��− 1 + s�o� + 8a�− 8 + 11s�o + �3�− 3

+ s�o��� ,

�d2 =
s2�1�o

30
�8a�− 8 + 3�3�− 3 + s�o��

+ 15�− 1 + �3�− 1 + s�o��� ,

�d3 =
s�2�o

15
�15 − 16a − 3�5 + 24a��2 + 3�5 + 8a�s�2�o� ,

�d4 =
�s�1�o�2�3

10
�− 5 + 5s�o + 8a�− 3 + s�o�� ,

�d5 =
�d4�1�o

3
, �d6 =

2�d4�2

s��1
.

Following the same procedure used before, the soliton
solution of Eq. �21� is given by

�1 = �2mSech�2�/W� , �23�

where the amplitude �2m= ±�6uo /Elx. Obviously, the physi-
cally reasonable solitons correspond to the condition E�0,
and in this case both compressive and rarefactive solitons are
also allowed to coexist.8,15

On the other hand, when A→0, but A�0, Eq. �21�
would reduce to8

��1

�T
+ F�1

��1

�X
+ B� �3�1

�X�Y2 +
�3�1

�X�Z2� + C
�3�1

�X3 + E�1
2��1

�X

= 0, �24�

where we have used A�2→F�1 /2. Substituting �= lxX
+ lyY + lzZ−uoT into Eq. �24�, we get

1

2
�d�1

d�
�2

=
uo�1

2

4D
�1 −

Flx

3uo
�1 −

Elx

6uo
�1

2� = − V��1,uo� ,

�25�

with

V��1,uo� =
− uo�1

2

4D
+

Flx�1
3

12D
+

Elx�1
4

24D
. �26�

For the formation of DL,1,8–10 we must have

V��m,uo� = 0, � dV

d�1
�

�1=�m

= 0, and � d2V

d�1
2�

�1=�m

� 0.

�27�

The conditions �27� ensure that the particle will remain at
rest at �1=�m and no reflection will occur. These conditions
imply

�1m = − F/E and uo = − ��F2lx�/�6E�� . �28�

Substituting for uo into the relation �26�, we obtain

V��1� =
�1

2Elx

24D
��1 − �m�2. �29�

From Eqs. �25� and �29�, we get

�d�1

d�
�2

=
− �1

2Elx

12D
��1 − �m�2.

Then, the DL solution is

�1 =
�m

2
�1 + tanh��/W1�� , �30�

where

W1 =
2

F
�− 12DE

lx
.

Obviously this DL solution exists only when the system pa-
rameters fulfill the condition DE�0. Thus, we can get either
compressive or rarefactive DA DLs, depending on the sign
of F.

Figure 12 shows the validity of the soliton solution, �23�,
for describing the system at the critical case. It shows that the
amplitude �2m increases/decreases as a or � /� increases.
The effect of dust-charge variation will also decrease the
soliton amplitude as for the original soliton, �19�.

FIG. 12. �2m is plotted against a for different � and � values. The upper
�solid� curve corresponds to constant dust charge, with lx=0.75, �=0.001,
and uo=0.1.
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VI. CONCLUSION

In this paper, we have analyzed analytically the proper-
ties of DA solitary waves in magnetized three-component
dusty plasmas comprising of warm variational charged dust
grains, nonthermal ions, and isothermal electrons. It is found
that the introduction of the nonthermally distributed ions as
well as the adiabatic dust-charge variation modifies signifi-
cantly the DA wave properties. Using a reductive perturba-
tion theory, a ZK equation, �16�, is derived. Depending on
the nonthermal parameter a, the compressive and/or rarefac-
tive DA soliton will be created. At critical values of a, ac, the
ZK equation fails to describe the system, which forced us to
seek another evolution equation adequate for describing the
system. In the neighbors of ac, a modified ZK equation with
a mixed nonlinearity, third- and fourth-order nonlinearities,
is derived. The solution of this evolution equation admits
whether there is coexistence of both the compressive and
rarefactive solitons or the creation of DL with the possibility
of its two kinds, depending on the a value. The violence of
DA solitary wave properties to the plasma parameters are
investigated numerically, and can be summarized as follows.
Although the increase of a causes a decrease of the dust
charge Zd and the maximum admitted value of �, �max, it
increases the wave velocity �, the soliton width W, and �2m.
On the other hand, the effect of dust-charge variation appears
to decrease � and �2m, however, it increases W, �1mc, and ac

For a constant dust charge, the rarefactive soliton amplitude
�1mr decreases continuously as � increases, although the
compressive soliton �1mc decreases rapidly at first for �
�10, thereafter it has a constant value. In the case of dust-
charge variation, however, both �1mr and �1mc decrease rap-
idly as � increases, but they will increase when � goes closer
to �max. Moreover, the solution of the modified ZK, with A
=0, �23�, allows the coexistence of the soliton with both
kinds. The effect of the parameters �, �, and � on the am-
plitude, width, and the velocity of the DA solitary waves is
also investigated in each case. The effect of another impor-
tant parameter, the wave obliqueness angle on the magnetic
field direction, lx, has been investigated also. For small a
values, W increases/decreases for lx�0.7/ lx�0.7. As a takes
higher values, this behavior becomes a continuous increase
for all lx values. The soliton amplitudes, �1mc, �1mr, and �2m,
are directly proportional to the reciprocal of lx. In short, we
can say that the soliton solution of the ZK equation, �19�, is
transformed at critical situation to another soliton, �23�,
which is characterized by the smaller amplitude and width.
When the soliton disappears, DL solution, �30�, is more rea-
sonably created. The compressive/rarefactive DA DLs will
be created depending on the sign of the coefficient F.

At the end, it is believed that the model and the results
presented here would be applicable to specific space plasma
systems such as the interaction between the solar wind with
the Moon,14 in which the nonthermal ions are acclerated near
the Moon due to their opposite charge to the presented dust
grains. If the ions become closer to the dust grains they will
contribute in the dust surface charging process. This phe-
nomenon is associated with solitary waves and shock
waves14 that are extensively discussed here. On the other

hand, from the DL properties, it is defined as a monotonic
transition of the electric potential connecting smoothly two
differently biased plasmas.31 The associated electric field is
able to speed up particles in narrow spatial regions to many
kilovolts. It was considered as one of the major acceleration
mechanisms occurring in nature.32

Another example is to understand the ion loss �oxygen�
from Mars, which results from ion pick up caused by mass
loading of the solar wind in the Martian boundary layer and
ionospheric O+ beams.13 As the dust grains attract the non-
thermal ion particle to charge their surface, in this case, the
ions seem to be captured or picked up by the dust grains, this
process will cause a loss of the ion population. Thus, this
paper would be very useful in interpreting ion acceleration
mechanisms near the Moon and also enhance our knowledge
on pickup ions around unmagnetized bodies, such as comets,
Mars, and Venus.14
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