
PHYSICS OF PLASMAS 12, 092304 �2005�
Higher-order contribution to obliquely nonlinear electron-acoustic waves
with electron beam in a magnetized plasma
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Propagation of electron-acoustic waves in a strongly magnetized four-component plasma consisting
of cold and hot electrons, a warm electron beam, and stationary ions is investigated. The present
model considered weakly dispersive and strongly magnetized plasma in the limit of long
wavelengths. The introduction of an electron beam allows the existence of electron-acoustic solitons
with velocity related to the beam velocity. With increasing the beam velocity and the beam
temperature, both the soliton amplitude and the width increase. Applying a reductive perturbation
theory, a nonlinear Zakharov-Kuznetsov �ZK� equation for the first-order perturbed potential and a
linear inhomogeneous Zakharov-Kuznetsov �ZK-type� equation for the second-order perturbed
potential are derived. Stationary solutions of these coupled equations are obtained using a
renormalization method. These solutions admit either compressive or rarefactive soliton type
depending on the electron-beam parameters. Moreover, the dependence of the solution on the beam
parameters, obliqueness on the magnetic field, and the magnetic field itself is also investigated. The
application of the present investigation to the broadband electrostatic noise in the dayside auroral
zone of the Earth’s magnetosphere is considered. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2041367�
I. INTRODUCTION

The electron-acoustic wave �EAW� is an electrostatic
wave which was first discovered experimentally,1,2 and has
been observed when the unmagnetized plasma is composed
of two electron populations described by two Maxwellian
distribution functions with different temperatures and densi-
ties. These two populations will be referred to as “cold” and
“hot” electrons,3,4 where the cold electrons provide the iner-
tia, and the restoring force comes from the pressure of the
hot electrons. Here, the ions play the role of the neutralizing
background, i.e., the ion dynamics does not influence the
EAWs because the EAW frequency is much larger than the
ion plasma frequency. The spectrum of the linear EAWs,
unlike the well-known Langmuir waves, extends only up to
the cold electron plasma frequency �pc= �4�noce

2 /me�1/2,
where noc is the unperturbed cold electron number density, e
is the magnitude of the electron charge, and me is the mass of
the electron.5

The study of the EAWs propagation plays an important
role not only in laboratory experiment but also in space
plasmas.6 Satellite measurements in the auroral and other
regions of the magnetosphere have shown bursts that form
broadband electrostatic noise �BEN� emissions. The associ-
ated electric-field intensities of these BEN ranges are from
few �V/m up to 100 mV/m.7–14 The observations of soli-
tary waves in the auroral zone suggest that there are two
classes of solitary waves: the first kind is associated with
electron beams and the other is associated with ion beams.
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Here we will focus our concern on the first kind. Solitary
waves associated with electron beams were first observed by
Geotail,10 then by Fast Auroral Snapshot �FAST� �Refs. 11
and 12�, and later by Polar13 spacecrafts. The signature of
these observations is found to display a nonlinear behavior.
Several theoretical attempts have been made to explain the
observed BENs in different regions of the Earth’s
magnetosphere.3–19 Ergun and co-workers11,12 stated that the
observed BEN bursts in the dayside auroral zone must have
three-dimensional components with the inclusion of the
magnetic-field effects. On the other hand, Berthomier et al.3

studied electron-acoustic �EA� solitons in an electron-beam
plasma system with isothermal hot electrons. It was found
that the introduction of an electron beam in such plasma
allows the existence of new EA solitons with velocity related
to the beam velocity. Also, the electron beam modifies the
topology of the roots of the linear dispersion relation in the
phase velocity space. Mace and Hellberg17 studied a three-
component magnetized plasma system �without an electron-
beam component�. Considering the case of magnetized ion
and nonmagnetized ions, they showed that the case of mag-
netized ions has a critical behavior and it can describe only
the very lowest-frequency waves in the Earth’s magneto-
sphere. Singh and Lakhina15 studied the generation of BEN
by EAWs in a four-component unmagnetized plasma. They
applied the linear theory to study the stability and the growth
rate of the EAWs for three different regions of the dayside
auroral zone, plasma sheet boundary layer �PSBL�, and polar
cusp regions. Since EAWs can be excited by electron and
laser beams, the electron beams in addition to the two elec-
tron populations are considered to be the main energy source

20
for the excitation of the electron wave mode. When the
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beam energy is sufficiently large, the nonlinear and disper-
sive effects are competing to produce EAWs, which are sta-
tionary in their comoving reference frame.21

On the other hand, in the reductive perturbation theory
�RPT�,22 a set of coupled nonlinear partial differential equa-
tions is reduced to a single evolution equation such as the
Korteweg de Vries �KdV� equation or the nonlinear
Schrödinger �NS� equation, depending if the system is
weakly dispersive or strongly dispersive.23,24 For a multidi-
mensional problem, these evolution equations become the
Zakharov-Kuznetov17,25,26 �ZK� equation or the
Davey-Stewartson27,28 �DS� equation. The association be-
tween the small-wave-number limit of the NS equation and
the oscillatory solution of the KdV equation was
satisfied.29,30

Investigations of small-amplitude EAWs in a weakly dis-
persive media are described by the ZK equation.17 This equa-
tion contains the lowest-order nonlinearity and dispersion,
and consequently can describe only waves of small ampli-
tude. If the wave amplitude or the width deviates signifi-
cantly from the prediction of the ZK equation, the higher-
order nonlinear and dispersion effects must be included to
accurately describe such waves. For this end, the higher-
order approximation of the RPT �Ref. 22� is known to be a
powerful tool.31 Our objective here is to propose a four-
component magnetized plasma model consisting of cold and
hot electrons, a warm electron beam, and stationary ions tak-
ing into account the effects of higher-order nonlinear and
dispersion terms to interpret the observed BEN in the day-
side auroral zone.8,9 Here, we will focus our interest only on
the strongly magnetized and weakly dispersive plasma model
only.

This paper is organized as follows: In Sec. II, we present
the basic set of fluid equations governing our plasma model.
The nonlinear EAWs are investigated through the derivation
of a ZK equation for the first-order perturbed potential and a
linear inhomogeneous ZK-type equation for the second-order
perturbed potential. In Sec. III, the renormalization method22

is applied to obtain the stationary solutions of the coupled
evolution equations. Section IV is devoted to the discussion
and the conclusion.

II. BASIC EQUATIONS

Let us consider an infinite, homogenous, collisionless,
magnetized plasma consisting of cold and hot electrons, a
warm electron beam, and stationary ions. The magnetic field
B0 is uniform and let b denote the vector B0 / �B0�, which for
simplicity, we will choose to lie along the z axis of our Car-
tesian coordinate system,17,32

�nj

�t
+ � · �nju j� = 0, �1�

�u j

�t
+ u j · �u j = −

1

mjnj
� pj +

1

mj
� � − � ju j � b , �2�

�pj + u j · �pj + 3pj � · u j = 0. �3�

�t
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In Eqs. �1�–�3�, nj, u j, and pj �j=c and b for the cold
electron and for the electron beam, respectively� are the den-
sities, velocities with uj, v j, and wj as their cartesian �x ,y ,z�
components, and pressures of the two fluids. � is the electric
potential. � j is the j-particle gyrofrequency and equals
eB0 /mjc.

The system of fluid equations and the Boltzmann-
distributed hot electrons are closed by the use of the Poisson
equation,

�2� = n0h exp � + nc + nb − ni0. �4�

In the above equations we have employed the following
normalizations:17 lengths by the modified Debye length �De

= �KBTh /4�n0ee
2�1/2, time by the inverse plasma frequency

�pe
−1= �me /4�n0ee

2�1/2, number densities by the total equilib-
rium electron density n0e, pj by n0eKBTh, temperatures by the
hot-electron temperature Th, uj by the hot-electron thermal
speed �KBTh /me�1/2, � by Th /e, masses by the electron mass
me, and � j by �pj= �4�n0je

2 /me�1/2, where KB is the Boltz-
mann constant.

The charge-neutrality condition in such plasma system is
always maintained through the relation

n0e = n0h + n0c + n0b, �5�

where n0h and n0b are the unperturbed hot and beam electron
densities, respectively. Furthermore, we assume that the
plasma in the equilibrium state obeys the following boundary
conditions as �x�→�:

� → 0, � � → 0, �2� → 0, nj → nj
�0�,

pj → pj
�0�, u0c → 0, u0b → u0, �6�

where nj
�0�=n0j and pj

�0�= p0j.
Before addressing the nonlinear evolution, we briefly

discuss the dispersion law for the linear EAW modes. Lin-
earizing Eqs. �1�–�4� with the ansatz 	
exp�i�w�, where
�w=k ·r−�t, we finally obtain the linear dispersion
relation17,32–34

1

�Dh
2 + k2 = �

j

�pj
2 �k2�̃ j

2 − k�
2� j

2�
�̃ j

4 − �̃ j
2�3k2Tj + � j

2� + 3k�
2Tj� j

2 , �7�

where k2=k�
2+k�

2 , k�
2=kz

2, k�
2 =kx

2+ky
2, and �̃ j =�−k�u0j.

For parallel propagation, k� =k, and for the strongly mag-
netized plasma ��̃ j �� j�, Eq. �7� reduces to

1

�k�Dh�2 + 1 = �
j

�pj
2

��̃ j
2 − 3k2Tj�

, �8�

where �Dh= �KBTh /4�n0he2�1/2.
For small wave numbers �long wavelengths� both the

dispersion laws �7� and �8� can be approximated to the low-
est order as an acoustic-like dispersion-free propagation
along the field, with a dispersive correction of order k3, i.e.,

� = k�V − c1k�
3 − c2k�k�

2 + ¯ , �9�

where the phase velocity V in the limit of vanishing wave

numbers is determined from
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n0h − �
j

n0j
 j = 0, �10�

where 
 j = �Ṽj
2−3Tj�−1 and Ṽj =V−u0j and the coefficients c1

and c2 are given by

c1 =
1

A
, c2 =

C

A
,

with

A = �
j

2n0jṼj
 j
2 and C = 1 + �

j

n0j�
 jṼj
2

� j
	2

. �11�

For a three-component plasma, i.e., without an electron
beam, Eq. �10� will be reduced to V2=n0c /n0h+3Tc which is
identical to that derived by Mace and Hellberg.17 Also, it
agrees exactly with that obtained by Berthomier et al.,3

Mamun and Shukla,4 and Verheest et al.32 Recently,
El-Taibany18 and El-Taibany and Moslem19 have derived a
similar equation as �10� for a four-component plasma with
hot-electron vortices. They showed �Fig. 1� that V increases
as uo increases. Also, V is influenced by Tb variation but it is
not affected significantly by Tc change. For a comprehensive
study of the electron-acoustic instability in a magnetized
plasma with a field-aligned beam, see, e.g., Sooklal and
Mace.35

On the other hand, for illustrative purpose, if we con-
sider Tj =0, k�
se�1 and k��Dh�1 in a three-component
plasma, Eq. �9� becomes17,32–34 �= �k�n0c� /n0h
1
− 1

2 ��k��Dh�2−k�
2 �
se

2 +�Dh
2 ���, where 
se=n0c / �n0h�c� is the

Larmor radius of an electron traveling at the linear parallel
phase speed. In a weakly dispersive limit, if we define34 k2

=�K2 with K of the order of typical scales of the plasma-like

se or �Dh, �w can be rewritten as

�w = K� · ��1/2r�� + K� · ��1/2�r� − Vt�� − K�� n0c

n0h
	

��K2�Dh
2 + K�

2 
se
2 ���3/2t/2� ,

from which, we conclude that in order to study nonlinear
EAWs, we have to use the following stretched

17,32–34

FIG. 1. Plot of ��1� �solid curve� and � �dotted curve� against � for the
three-component plasma �without an electron beam�, where V=1.5, lz=0.5,
and �=0.1.
variables:
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X = �1/2x, Y = �1/2y, Z = �1/2�z − Vt�, T = �3/2t .

�12�

V is the EA linear phase velocity �parallel to the magnetic-
field direction� when nonlinearities and dispersion coeffi-
cients are omitted and it basically corresponds to the linear
phase velocity in the limit k→0, and obeys Eq. �10�. � mea-
sures the size of the perturbation amplitude. Let us expand
the variables nj, pj, �, uj, v j, and wj in powers of �,17,32–34

nj = n0j + �nj
�1� + �2nj

�2� + �3nj
�3� + ¯ , �13a�

pj = p0j + �pj
�1� + �2pj

�2� + �3pj
�3� + ¯ , �13b�

� = ���1� + �2��2� + �3��3� + �4��4� + ¯ , �13c�

uj = �3/2uj
�1� + �2uj

�2� + �5/2uj
�3� + �3uj

�4� + ¯ , �13d�

v j = �3/2v j
�1� + �2v j

�2� + �5/2v j
�3� + �3v j

�4� + ¯ , �13e�

wj = u0j + �wj
�1� + �2wj

�2� + �3wj
�3� + �4wj

�4� + ¯ . �13f�

Using a RPT �Ref. 36� and substituting Eqs. �12� and
�13� into the basic set of equations �1�–�4�, the lowest orders
in � give the following relations:

nj
�1� = − n0j
 j�

�1�, pj
�1� = − 3p0j
 j�

�1�,

wj
�1� = − Ṽj
 j�

�1�,

uj
�1� =

Ṽj
2
 j

� j

���1�

�Y
, v j

�1� = −
Ṽj

2
 j

� j

���1�

�X
. �14�

The next order of the perturbation gives

�nj
�1�

�T
− Ṽj

�nj
�2�

�Z
+ n0j

�uj
�2�

�X
+ n0j

�v j
�2�

�Y
+ n0j

�wj
�2�

�Z
+

�

�Z
�nj

�1�wj
�1��

= 0, �15a�

�wj
�1�

�T
− Ṽj

�wj
�2�

�Z
+ wj

�1��wj
�1�

�Z
+

1

n0j

�pj
�2�

�Z
−

nj
�1�

n0j
2

�pj
�1�

�Z
−

���2�

�Z

= 0, �15b�

�pj
�1�

�T
− Ṽj

�pj
�2�

�Z
+ wj

�1��pj
�1�

�Z
+ 3p0j� �uj

�2�

�X
+

�v j
�2�

�Y
+

�wj
�2�

�Z



+ 3pj
�1��wj

�1�

�Z
= 0, �15c�

� �2��1�

�X2 +
�2��1�

�Y2 +
�2��1�

�Z2 
 − n0h��2� −
n0h

2
��1�2

− nj
�2� = 0,

�15d�

uj
�2� = −

Ṽj
3
 j

�2

�2��1�

�Z�X
, �15e�
j
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v j
�2� = −

Ṽj
3
 j

� j
2

�2��1�

�Z�Y
. �15f�

Eliminating the second-order perturbed quantities and
using Eq. �14�, one can obtain the ZK equation17,34 for
EAWs,

	1���1����1� =
���1�

�T
+ c1

�3��1�

�Z3 + c2� �3��1�

�Z�X2 +
�3��1�

�Z�Y2

+ c3��1����1�

�Z
= 0, �16�

where

c3 =
B

A
, B = − �

j

3n0j�Ṽj
2 + Tj�

�Ṽj
2 − 3Tj�3

− n0h,

and A is still given by �11�. The coefficients c1, c2, and c3 can
be easily reduced to those obtained by Mace and Hellberg17

and Verheest et al.32 for the three-component magnetized
plasma �without a beam electron component�. A similar
equation to Eq. �16� was first derived by Zakharov and
Kuznetsov37 for weakly nonlinear ion acoustic waves in
magnetized plasma. They showed that the dispersion arising
from a combination of charge separation and finite Larmor
radius effects can balance nonlinearity.17,37

On the other hand, the perturbed quantities nj
�2�, wj

�2�,
pj

�2�, uj
�3�, and v j

�3� can be obtained in terms of ��1� and ��2� as
follows:

nj
�2� = D1��1�2

+ D2
�2��1�

�Z2 + D3� �2��1�

�X2 +
�2��1�

�Y2 

+ D4��2�, �17a�

wj
�2� = E1��1�2

+ E2
�2��1�

�Z2 + E3� �2��1�

�X2 +
�2��1�

�Y2 

+ E4��2�, �17b�

pj
�2� = F1��1�2

+ F2
�2��1�

�Z2 + F3� �2��1�

�X2 +
�2��1�

�Y2 
 + F4��2�,
�17c�
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uj
�3� =

1

� j

�

�Y
�G1��1�2

+ G2
�2��1�

�Z2 + G3� �2��1�

�X2 +
�2��1�

�Y2 

+ G4��2�� , �17d�

v j
�3� =

− 1

� j

�

�X
�G1��1�2

+ G2
�2��1�

�Z2 + G3� �2��1�

�X2

+
�2��1�

�Y2 
 + G4��2�� , �17e�

where Dh, Eh, Fh, and Gh �h=1,2 ,3 ,4� are given in the Ap-
pendix.

From O��5/2�, and using Eqs. �17d� and �17e�, we have

uj
�4� = −

Ṽj

� j
2�H1� ���1�

�X

���1�

�Z

 + H2���1��

2��1�

�Z�X



+ H3
�4��1�

�X�Z3 + H4� �4��1�

�Z�X3 +
�4��1�

�Z�X�Y2

+ G4

�2��2�

�Z�X
� , �18a�

v j
�4� = −

Ṽj

� j
2�H1� ���1�

�Y

���1�

�Z

 + H2���1��

2��1�

�Z�Y



+ H3
�4��1�

�Y�Z3 + H4� �4��1�

�Z�Y�X2 +
�4��1�

�Z�Y3

+ G4

�2��2�

�Z�Y
� , �18b�

where Hh �h=1,2 ,3 ,4� is given in the Appendix.
For O��3�, and following the usual procedure of the RPT

�Ref. 36�, we can obtain a set of nonlinear equations in the
third perturbed quantities. Eliminating nj

�3�, wz
�3�, pj

�3�, uj
�4�,

and v j
�4� from this set of equations, we finally obtain a linear

inhomogeneous ZK-type equation for the second-order per-
�2�
turbed potential � ,
	2���1����2� =
���2�

�T
+ c1

�3��2�

�Z3 + c2� �3��2�

�Z�X2 +
�3��2�

�Z�Y2
 + c3
���1���2�

�Z

= − J1��1�2���1�

�Z
− J2��1��

3��1�

�Z3 − J3���1� �3��1�

�Z�X2 + ��1� �3��1�

�Z�Y2
 − J4
���1�

�Z

�2��1�

�Z2

− J5� ���1�

�Z

�2��1�

�X2 +
���1�

�Z

�2��1�

�Y2 
 − J6
�5��1�

�Z5 − J7� ���1�

�X

�2��1�

�Z�X
+

���1�

�Y

�2��1�

�Z�Y



− J8� �5��1�

�Z3�X2 +
�5��1�

�Z3�Y2
 − J9� �5��1�

�Z�X4 + 2
�5��1�

�Z�X2�Y2 +
�5��1�

�Z�Y4
 , �19�
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where Jq�q=1,2 ,3 , . . . ,9� is given in the Appendix.
Thus, we conclude that the basic set of Eqs. �1�–�4� is

reduced to a ZK equation, Eq. �16�, for the first-order per-
turbed potential ��1�, and a ZK-type equation, Eq. �19� for
the second-order perturbed potential ��2�, with source term,
the right-hand side of Eq. �19�.

III. THE STATIONARY SOLUTIONS

In Sec. II, it has been shown that the higher-order non-
linearities are given by the ZK equation, Eq. �16�, and ZK-
type equation, Eq. �19�, with an inhomogeneous term �a
source term�. These equations have resonant terms that give
rise to secular behavior.19,22,38 To eliminate this nonfavorable
behavior, we adopt the renormalization method introduced
by Kodama and Taniuti.22 According to this method, Eq. �16�
is added to Eq. �19� to yield

	1���1����1� + �
n�2

�n	2���1����n� = �
n�2

�nS�n�, �20�

where S�2� represents the right-hand side of �19�. We add

�
n�1

�n��

lz

���n�

�Z

to both sides of �20�, where �� is given by a power series in
� ,��=���1�+�2��2�+. . ., with coefficients to be determined
later. The crucial point in this procedure is that we expand ��
in the right-hand side, while in the left-hand side, it is not
expanded. Thereafter, the ��n� are determined successively to
cancel out the resonant term in S�n�.

Thus Eqs. �16� and �19� become

��̃�1�

�T
+ c1

�3�̃�1�

�Z3 + c2� �3�̃�1�

�Z�X2 +
�3�̃�1�

�Z�Y2
 + c3�̃�1���̃�1�

�Z

+
��

lz

��̃�1�

�Z
= 0, �21�

��̃�1�

�T
+ c1

�3�̃�2�

�Z3 + c2� �3�̃�2�

�Z�X2 +
�3�̃�2�

�Z�Y2
 + c3
��̃�1��̃�2�

�Z

+
��

lz

��̃�2�

�Z
= S�2���̃�1�� +

��1�

lz

��̃�1�

�Z
. �22�

The upper sign on ��1� and ��2� indicates the renormal-
ization potentials. Let us introduce the variable

� = lxX + lyY + lzZ − �� + ���T , �23�

where lx, ly, and lz are the directional cosines on the
magnetic-field direction �lx

2+ ly
2+ lz

2=1� and the parameter � is
related to the Mach number M =V /Cea by19,38

� + �� = M − 1 = �M . �24�

Using the vanishing boundary condition for �̃�1���� and
�̃�2���� and their derivatives up to second order for ���→�,
Eqs. �21� and �22� can be integrated with respect to the vari-

able � to yield
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d2�̃�1�

d�2 +
1

f
� c3

2
��1� −

�

lz

�̃�1� = 0, �25�

d2�̃�2�

d�2 +
1

f
�c3�̃�1� −

�

lz

�̃�2� =

1

lzf
�

−�

� �S�2���̃�1��

+ ��1�d�̃�1�

d�

d� , �26�

where f =c2+ �c1−c2�lz
2. The one-soliton solution of Eq. �25�

is given by

�̃�1���� = �0 sech2���−1� , �27�

where the amplitude �0 and the width � are given by 3� /c3lz

and 2�lzf /�, respectively. Using Eq. �27�, the source term of
Eq. �26� becomes

1

lzf
�

−�

� �S�2���̃�1�� + ��1�d�̃�1�

d�

d�

= − �2K2�0
2�−2 + 2K3�0

2�−2 − 120K4�0�−4�sech4���−1�

− �K1

3
�0

3 − 2K2�0
2�−2 − 4K3�0

2�−2

+ 120K4�0�−4	sech6���−1� , �28�

where

K1 =
J1

f
, K2 =

��J4 − J5 − J6�lz
2 + J5 + J6�

f
,

K3 =
��J2 − J3�lz

2 + J3�
f

,

K4 =
��J6 − J8 + J9�lz

4 + �J8 − 2J9�lz
2 + J9�

f
.

The resonant term in S�2����1�� is canceled out if we put

��1� = 16lzfK4�−4. �29�

To solve Eq. �26�, we define the new independent variable

� = tanh���−1� , �30�

thereby Eq. �26� becomes

d

d�
��1 − �2�

d�̃�2�

d�

 + �3�3 + 1� −

22

�1 − �2�
�̃�2� = T��� ,

�31�

with

T��� = K5�1 − �2� + K6�1 − �2�2,

where

K5 = − �2�2�K2 + K3� − 120K4�0�−2� ,
0
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K6 = − �K1�0
3�2

3
− 2�0

2�K2 + 2K3� + 120K4�0�−2
 .

The two independent solutions of the homogeneous part of
Eq. �31� are given by the associated Legendre functions of
the first and the second kinds,

P3
2��� = 15��1 − �2� , �32�

Q3
2��� =

15

2
��1 − �2�ln�1 + �

1 − �
	 +

�2�5�2 − 3�
�1 − �2�

+ 20�2 − 8.

�33�

The complementary solution of Eq. �31� is given by

�̃c
�2� = C1P3

2��� + C2Q3
2��� . �34�

Here the first term is the secular one, which can be elimi-
nated by renormalizing the amplitude. Also, C2=0 as a result
of the vanishing boundary condition for �̃�2���� as ���→�.

Using the method of variation of parameters,19,36,38 the
particular solution of Eq. �31� can be written as

�̃p
�2� = L1���P3

2��� + L2���Q3
2��� , �35�

where L1��� and L2��� are given by

L1��� = −� T���Q3
2���

�1 − �2�W�P3
2,Q3

2�
d� and

L2��� =� T���P3
2���

�1 − �2�W�P3
2,Q3

2�
d� , �36�

and the Wronskian W�P3
2 ,Q3

2� is given by

W�P3
2,Q3

2� = P3
2dQ3

2

d�
− Q3

2dP3
2

d�
= 120�1 − �2�−1. �37�

Finally, �̃p
�2� is given by

�̃p
�2� =

9�2

c3
2lz

2f
�−

f2

2c3
K1 −

f

12
�K2 − 2K3�

+
5

12
c3K4
sech2���−1� +

9�2

c3
2lz

2f
�−

f2

2c3
K1 +

f

4
�K2

+ 2K3� −
5

4
c3K4
sech2���−1�tanh2���−1� , �38�

where

� = �M�1 −
K4

lzf
�M	 , �39�

and the modified width is given by

� = � 4lzf

�M
	1/2�1 +

K4

2lzf
�M	 . �40�

Using Eqs. �27� and �38� and keeping only terms of or-
der ��M�2, the stationary solution for nonlinear EAWs, with

the aid of Eq. �39�, is given by
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�̃ = �̃�1� + �̃p
�2�

�̃ =
3�M

c3lz
sech2���−1� +

9��M�2

c3
2lz

2f
�−

f2

2c3
K1 −

f

12
�K2

− 2K3� +
1

12
c3K4
sech2���−1�

+
9��M�2

c3
2lz

2f
�−

f2

2c3
K1 +

f

4
�K2 + 2K3� −

5

4
c3K4


� sech2���−1�tanh2���−1� . �41�

Tiwari and Sharma39 studied ion acoustic waves in a
plasma with two temperature ions using the renormalization
procedure. Later, Yashvir et al.40 investigated the same wave
in an ion-beam plasma system. Their evolution equations are
the standard KdV and KdV-type equations for the first- and
second-order perturbed potentials, respectively. They ob-
tained a solution similar to Eq. �41� that nominated as
“dressed soliton.” It was shown that the dressed soliton has a
very good agreement with the predicted exact solution than
the solution of the KdV did.

IV. DISCUSSION AND CONCLUSION

We considered a four-component magnetized plasma
consisting of cold and hot electrons, a warm electron beam,
and stationary ions. Here we restrict our study to a strongly
magnetized and weakly dispersive plasma in the limit of long
wavelenghts. Using a RPT, the basic set of fluid equations
describing the system leads, at the lowest order of perturba-
tion theory, to a ZK equation, Eq. �16�. For a better accuracy,
the higher-order nonlinear and dispersion terms have to be
included. In this case, a linear inhomogeneous ZK-type
equation, Eq. �19�, is derived. Using the renormalization
method, the solutions of these coupled evolution equations
are obtained: �27� and �41�.

To examine the effect of the beam parameters, the ob-
liqueness of the wave on the magnetic fields and the mag-
netic field itself, we analyze numerically both the amplitude
and the width of the nonlinear EAWs. Recently, Berthomier
et al.34 presented a scaling of three-dimensional �3D� solitary
waves observed by FAST and Polar spacecrafts using a non-
linear fluid model of 3D EAWs. Here, we will apply our
results to the observed BEN emissions that were recorded as
two main bursts �burst a and b� in the auroral dayside region
of the Earth’s magnetosphere by the Viking satellite.7–9 Be-
cause burst b is more intense than burst a, we will focus our
attention on burst b. Figure 1 shows that the three-
component magnetized plasma model �without the electron-
beam component� permits a rarefactive soliton only and this
agrees exactly with the limit of our work �Mace and
Hellberg�.17 Also, it is shown that the effect of higher-order
nonlinearity is unnecessary in a three-component magnetized
plasma. Thus, it is sufficient to describe EAW with a ZK
evolution equation in such systems.17 Figure 2 proves that
the introduction of the warm electron beam permits the ex-
istence of either rarefactive or compressive soliton depend-

ing on the electron-beam streaming velocity. We will con-
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sider the parametric study of compressive solitons. Figure 3
shows the dependence of both the higher nonlinear solutions
��1� and � on the beam parameters and the magnetic field
associated with the electron beam. For simplicity, we omit
the upper sign on both �. Figure 3 illustrates that, for ��1�

and �, amplitudes/widths increase as u0 or Tb increases/
decreases. However, their amplitudes are not affected by �b.
Their associated widths decrease by increasing �b. Al-
though, �0 is directly proportional to the reciprocal of lz, the
soliton width is a nonlinear function of lz. Figure 4 shows the
variation of � with lz. It is obvious that for lz�0.6 ��0.6�, �

FIG. 2. Plot of the amplitude �0 against u0, for V=1.25, lz=0.75, and �
=0.1.

FIG. 3. Plot of ��1� and � against � where in �a, b�, u0=0.5 �dotted line�,
u0=0.51 �dashed line�, and u0=0.52 �solid line�; in �c, d� u0=0.55, Tb

=0.18 �dotted line�, Tb=0.2 �dashed line�, and Tb=0.22 �solid line�; and in
�e, f� u0=0.5, �b=0.14 �dotted line�, �b=0.16 �dashed line�, and �b=0.18

�solid line� with V=1.25, �=0.1, and lz=0.35.
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increases �decreases�. This situation is very complicated if
we try to study the variation of � with lz. Moreover, accord-
ing to the principal rule of the reductive perturbation
theory,19,22,33 the following condition must be satisfied:

��̃�2��

��̃�1��
� 1. �42�

Figures 5�a�, 5�c�, and 5�d� show that, for 0.7� lz�0.3, the
higher-order nonlinear solution �̃ is valid around �=0 only,
otherwise ��̃�2��� ��̃�1�� which leads to forbidden regions.
Vice versa, Fig. 5�b� shows that, for 0.7� lz�0.3, �̃ presents
a higher-order nonlinear EAWs for all � values with the
transformation of the single hump soliton, �̃�1�, to be a new

FIG. 4. Plot of soliton width � against lz for V=1.25, u0=0.5, and �=0.1.

FIG. 5. Plot of ��1� �dotted line�, ��2� �dashed line�, and � �solid line�
against � with V=1.5, u0=0.75, lz=0.25, and �=0.1 where �a� lz=0.25, �b�

lz=0.5, �c� lz=0.75, �d� lz=0.85, �e� lz=0.87, and �f� lz=0.95.
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soliton with two humps until lz=0.87. If the wave oblique-
ness to the magnetic-field direction, lz, is �0.87, no solution
is allowable for all � because ��̃�2��� ��̃�1�� �Figs. 5�e� and
5�f��.

On the other hand, by using the parameters of Dubouloz
et al.8,9 �Table 2� for the burst b, n0c=0.2 cm−3, n0h

=1.5 cm−3, n0b=1 cm−3, Tc=2 eV, Th=250 eV, Tb=50 eV,
�c=0.3, and �b=0.14 will lead to �Dh�71.5 m which dif-
fers than that obtained by Mamun and Shukla4 due to intro-
duction of new effects here. Using the formula4,8,9,18,19 E0

=�0�KBTh /e�Dh���0�250/71.5� V/m�110 mV/m �Refs.
9 and 15� for �0�0.032, the solution �27� can be trans-
formed into the energy wave form. A similar transformation
can be used to transform �̃ to E. The attached figures show a
good agreement between the present model and the recorded
data7–9 to interpret the BEN emissions observed in the day-
side auroral zone of the Earth’s magnetosphere.

It is noted here that Ghosh et al.28 obtained recently a
dromion solution for obliquely nonlinear EAWs in strongly
dispersive space plasmas through derivation DS equation.
However, our model is focused on the weakly dispersive
ones. At the end, it is quite clear that the higher the nonlin-
earity, then the wave obliqueness on the magnetic-field di-
rection must be involved to model the observed BEN in the
auroral dayside region of the Earth’s magnetosphere accu-
rately.

APPENDIX

The coefficients presented in this paper are expressed as
follows �we omit � j for simplicity�:

E1 =

 j

2

2
�c3Ṽj

2 + 3Tjc3 + 
 jṼj
3 + 9Tj
 jṼj�,

E2 = c1
 j
2�Ṽj

2 + 3Tj� ,

E3 = c2
 j
2�Ṽj

2 + 3Tj� −
3Tj
 j

2Ṽj
3

� j
2 , E4 = − 
 jṼj , �A1�

D1 =
n0j

2Ṽj

�c3
 j + 2
 j
2Ṽj + 2E1�, D2 =

n0j

Ṽj

�c1
 j + E2� ,

D3 =
n0j

Ṽj� j
2
�c2
 j� j

2 − 
 jṼj
3 + E3� j

2�, D4 = − n0j
 j , �A2�

F1 =
3p0j

2Ṽj

�c3
 j + 4
 j
2Ṽj + 2E1�, F2 =

3p0j

Ṽj

�c1
 j + E2� ,

F3 =
3p0j

Ṽj� j
2
�c2
 j� j

2 − Ṽj
3
 j + E3� j

2�, F4 = − 3p0j
 j ,

�A3�

G1 =
3p0j
 j

2

2n0j
−

F1

n0j
, G2 = −

Ṽj
4
 j

�2 −
F2

n0j
,

j
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G3 = −
F3

n0j
, G4 = 1 −

F4

n0j
, �A4�

H1 = c3
 jṼj + 2G1, H2 = H1 + Ṽj
2
 j

2,

H3 = c1Ṽj
 j + G2, H4 = c2Ṽj
 j + G3, �A5�

J1 =
− n0h

2A
+

D1

AṼj

�2c3 − 3Tj
 j
2Ṽj + 3
 jṼj� +

E1n0j

AṼj

�2c3
 jṼj

+ 3
 j
2Ṽj

2 + 21Tj
 j
2 + 3
 j� +

F1

AṼj

�2c3
 j + 3
 j
2Ṽj�

+
3p0j
 j

4

A
,

J2 =
2c1

AṼj

�D1 + F1
 j + E1
 jṼjn0j� +
D2

AṼj

�c3 + 
 jṼj�

+
c3F2
 j

AṼj

+
E2n0j

AṼj

�c3
 jṼj + 
 j
2Ṽj

2 + 9Tj
 j
2 + 
 jṼj� ,

J3 =
2c2

AṼj

�D1 + F1
 j + E1
 jṼjn0j� +
D3

AṼj

�c3 + 
 jṼj�

+
F3c3
 j

AṼj

+
E3n0j

AṼj

�c3
 jṼj + 
 j
2Ṽj

2 + 9Tj
 j
2 + 
 j�

+
H2n0j

A� j
2 �3Tj
 j + 1� −

n0j

A� j
2 �9Tj
 j

3Ṽj
2 + 
 j

2Ṽj
2� ,

J4 =
D2

AṼj

�3c3 − 3Tj
 j
2Ṽj + 
 jṼj� +

3F2

AṼj

�c3
 j + 
 j
2Ṽj�

+
E2n0j

AṼj

�3c3
 jṼj + 
 j
2Ṽj

2 + 3Tj
 j
2 + 
 j� ,

J5 =
D3

AṼj

�c3 − 3Tj
 j
2Ṽj + 
 jṼj� +

F3
 j

AṼj

�c3 + 3
 jṼj�

+
E3n0j

AṼj

�c3
 jṼj + 
 j
2Ṽj

2 + 3Tj
 j
2 + 
 j� +

H1n0j

A� j
2 �3Tj
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+ 1� ,

J6 =
c1

AṼj

�D2 + F2
 j + E2
 jṼjn0j� ,

J7 =
2c3

AṼj

�D3 + F3
 j + E3
 jṼjn0j� +
�H1 + H2�n0j

A� j
2 �3Tj
 j

+ 1� −
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3Ṽj
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j
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J8 =
c2

AṼj

�D2 + F2
 j + E2
 jṼjn0j� +
c1

AṼj

�D3 + F3
 j

+ E3Ṽj
 jn0j� +
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