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ABSTRACT
Apart from being a vital and exciting field in mathematics with interesting results, projective
spaces have various applications in design theory, coding theory, physics, combinatorics, num-
ber theory and extremal combinatorial problems. In this paper, we consider real, complex and
quaternion projective spaces. We focus on the geometric feature of the sectional curvatures. We
first study the real and complex projective spaces. We prove that their sectional curvatures are
constant. Then, we consider the quaternion projective space. Specifically, we prove that the
quaternion projective space has a positive constant sectional curvature. We also determine the
pinching constant for the complex and quaternion projective spaces.
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1. Introduction

The projective geometry plays a vital role inmany visual
computing domains, in particular, computer vision
modelling and computer graphics [1]. It gives a mathe-
matical formalism to prescribe the geometry of cameras
and the associated transformations, therefore enabling
the design of computational approaches that manipu-
late 2-dimensional (2-D) projections of 3-D objects. In
this regard, a fundamental side is the fact that objects at
infinity can be represented and handledwith projective
geometry and this in contrast to the Euclidean geome-
try. Indeed the projective geometry turns out to be very
useful in order to prescribe some complex phenomena
in physics [2].

The quaternions Q be 4-D real algebra generated by
the identity element 1 and the symbols i, j and k. So

Q = {q0 + q1i + q2j + q3k : q0, q1, q2, q3 ∈ R},

where

ij = −ji = k, jk = −kj = i, ki = −ik = j,

i2 = j2 = k2 = −1. (1)

We call Re q = q0 the real part of the quaternion num-
ber q and Im q = q − q0 the imaginary part. The space
of imaginary q ∈ Q is denoted ImQ. The conjugate of q
is q̄ = Re q − Im q = q0 − q1i − q2j − q3k. The norm of

q, |q| = √
qq̄ = √

q̄q =
√
q20 + q21 + q22 + q23. Recall that

Q is not commutative, so that we should be careful

with the order of factors in products. Indeed Q is a
real division algebra i.e. |pq| = |p||q| for all p, q ∈ Q.
Qn is the n−D right module over the quaternions Q. If
a = (a1, . . . , an) and b = (b1, . . . , bn) are two vectors in
Qn, where ai, bi ∈ Q, then we denote by aq the vector
(a1q, a2q, . . . , anq), q ∈ Q.

The set of all matrices of degree n with coefficients
inQwill be denoted byM(n,Q). Amatrix σ ∈ M(n,Q) is
said to be symplectic if and only if σ̄ t · σ = I, where I is
the identity n × n matrix, that is σ−1 = σ̄ t , σ−1 being
the inverse of σ defined by σ−1 · σ = I. The group of
all symplectic matrices will be denoted by Sp(n), we
denote the Lie algebra of Sp(n), the set of matrices σ ∈
M(n,Q) which satisfies σ̄ + σ t = 0, by sp(n).

Quaternion Algebra is a bit of a mixed bag, this is a
very interesting and powerful tool for both modelling
certain phenomenon, and for algebraic study. More-
over it turns out to be very important in areas of mesh
deformation, biomechanics, physics, computer graph-
ics andmolecularmodelling. Formore details about the
quaternion algebra, we refer to [3].

Riemannian submersions, presented by O’Neill [4]
and Gray [5], have been utilized by various authors to
establish somedefinite Riemannianmetrics, such as Ein-
stein, positively curved [6,7]. Indeed Riemannian sub-
mersions are used to investigate different geometric
structures of Riemannian manifolds [8,9]. Sectional cur-
vature is of great importance in differential geometry.
This concept describes how curved the space is in some
2-D subspace of the tangent space at a given point.
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We are interested in those homogeneous spaces that
have strictly positive sectional curvatures. An impor-
tant feature of these spaces is the so called “pinching
constant” i.e. the quotient of the maximal and minimal
positive sectional curvatures.

This article is concerned with a study of some geo-
metric properties of the projective spaces as a Rie-
mannian homogenous symmetric spaces. The geomet-
ric feature that we focus on are the sectional curva-
tures. Namely, we determine the sectional curvature
for the real projective spaces, using the properties of
it as a homogenous Riemannian symmetric space. We
also determine the sectional curvature for the com-
plex and quaternion projective spaces, using the Rie-
mannian submersions and O’Neill formula. An impor-
tant feature of these spaces is called pinching constant,
which is the quotient of the maximal and minimal posi-
tive sectional curvatures. The projective spaces can be
studied as a separate field, but are also used in dif-
ferent applied areas, geometry especially. The projec-
tive spaces play an important role in various aspects
combinatorics, design theory, number theory, physics,
coding theory and extremal combinatorial problems.
Indeed projective spaces are important for topology
and algebraic topology as well. There are differential
projective spaces that finite projective spaces that have
applications in analysis anddiscretemathematics.Many
authors mainly had paid attention to study the projec-
tive spaces and their applications, see [10–15].

2. Preliminaries

We represent the set of all tangent vectors at pby Tp(M),
the so called tangent space, where M is smooth man-
ifold, χ(M) is the set of all smooth vector fields and
C∞(M) is the set of smooth functions ofM.

Definition 2.1 ([16]): A connection ∇ on a smooth
manifoldM is amap∇ : χ(M) × χ(M) �→ χ(M), (E, F)
�→ ∇EF, which satisfies the following properties:

(a) ∇E(F + ϒ) = ∇EF + ∇Eϒ ,
(b) ∇E+Fϒ = ∇Eϒ + ∇Fϒ ,
(c) ∇hEF = h∇EF,
(d) ∇EhF = E(h)F + h∇EF, ∀ E, F,ϒ ∈ χ(M) and h ∈

C∞(M).

Definition 2.2 ([17]): A Riemannian metric g on a
smoothmanifoldM is a tensor of type (0, 2) that obey

(a) g(E, F) = g(F, E),
(b) g(α E + γ F,ϒ) = α g(E, F) + γ g(F,ϒ),
(c) If g(E, F) = 0,∀ E ∈ χ(M), then F = 0,
(d) g(E, E) > 0,∀ E 	= 0, E, F,ϒ ∈ χ(M) and α, γ ∈

C∞(M).

(M, g) is called a Riemannian manifold.

Definition 2.3 ([17]): A pseudo-Riemannian manifold
is a pair (M, g), M is a real differentiable manifold and
g is a field of non-degenerate symmetric bilinear forms
onM.

Proposition 2.1 ([16]): Consider a Riemannian mani-
fold M, there is a unique connection∇ onM satisfies

(1) ∇EF − ∇FE = [E, F].
(2) E · g(F,ϒ) = g(∇EF,ϒ) + g(F,∇Eϒ), E, F,ϒ ∈

χ(M).

Here∇ is called Riemannian connection or Levi–Civita
connection.

Definition 2.4 ([8]): Consider (M, g) and ∇ are the Rie-
mannianmanifold and Riemannian connection, respec-
tively. The curvature tensor of type (1, 3) defined by

R(E, F)ϒ = ∇E∇Fϒ − ∇F∇E − ∇[E,F]ϒ .

Definition 2.5 ([17]): Given a point p ∈ M and let l ∈
Tp(M) be a 2-D subspace of Tp(M) and let E, F ∈ l be two
linearly independent vectors. Then

K(E, F) = g(R(E, F)F, E)
g(E, E)g(F, F) − g(E, F)2

(2)

does not depend on the choice of the vectors E, F ∈ l
and K(E, F) is called the sectional curvature of l at p,
where R is the curvature tensor at p. If all sectional cur-
vature at all points ofM is equal to constant C, thenM is
said to be a space of constant curvature.

Remark 2.1: If E and F are orthonormal vectors, then
the sectional curvature of a Riemannian manifold is
denoted by

K(E, F) = g(R(E, F)F, E).

Definition 2.6 ([18]): Let V be a finite-dimensional
vector space over an arbitrary field K. The projec-
tive space P(V) is the set of 1−D linear subspaces of
V, where dimP(V) = dim V − 1 (dimension of P(V)),
which denoted by Pn

K or KPn.

Definition 2.7: The standard unit n-sphere Sn is the
set of points (x0, x1, . . . , xn) in Rn+1, which obey the
equation x20 + x21 + · · · + x2n = 1.

3. Riemannian submersions

In this section, we need some important input from [4,5]
and [6, Chapter 9] about the Riemanniana submersions
and themost important relatednotions for our purpose.

Definition 3.1 ([4]): Let π : M → B be a differentiable
map between differential manifolds M and B. Then π
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is a submersion if its differential dπp is surjective for all
points p ∈ M.

Definition 3.2 ([4]): Let π : (M, g) → (B, f ) be a
smooth submersion. Then the vertical bundle V =
Ker(dπ) is the kernel of the differential dπ . The hori-
zontal bundle is the orthogonal complement to V , i.e.
H = (V)⊥.

At each point p ∈ M, we have TpM = Vp ⊕ Hp. A vec-
tor field onamanifoldM is said tobe vertical (or horizon-
tal) if it is tangent (or orthogonal) to fibres π−1(b), for
all b ∈ B. We also denote the projections of vector fields
in C∞(TM) to the vertical and horizontal bundles by V
and H, respectively. The horizontal and vertical parts
of vector field X on M are represented by XH and XV ,
respectively.

Definition 3.3 ([4]): Consider (M, g) and (B, f ) are Rie-
mannian manifolds, p be a point in M. A Riemannian
submersion π : M → B is a mapping with a differential
dπ that satisfies

(1) dπ : TpM → Tπ(p)B is surjective for all p ∈ M,
(2) dπ preserves lengths of horizontal vectors, i.e.

g(X , Y) = f (dπ(X), dπ(Y)),

for all horizontal X and Y .

O’Neill in [4] defines a fundamental tensor describes
submersion as follows: For arbitrary vector fields E, F ∈
C∞(TM) onM, the tensors A is defined as

AEF = V∇HE(HF) + H∇HE(VF). (3)

Lemma 3.1 ([4]): If X and Y are horizontal vector fields,
then AXY = −AYX = 1

2V[X , Y].

Definition 3.4 ([19]): Let (M, g) and (B, f ) be two
pseudo-Riemannian manifolds. A smooth surjective
submersion π : M,→ B is a pseudo-Riemannian sub-
mersion (see [20]) when dπ preserves scalar products of
vectors normal to fibres and when the metric induced
on every fibre π−1(b), where b ∈ B, is non-degenerate.

Proposition 3.1 ([4]): If X, Y, Z, H be horizontal vector
fields onM. Then the curvatures R of M and R∗ of B satisfy

〈R∗(X , Y)Z,H〉 = 〈R(X , Y)Z,H〉 + 2〈AXY ,AZH〉
− 〈AYZ,AXH〉 − 〈AZX ,AYH〉. (4)

Corollary 3.1 ([4]): Letπ : M → B be a submersion, and
letK andK∗ be the sectional curvature ofMandB, respec-
tively. If X and Y are horizontal vectors at a point of M,
then

K∗(X , Y) = K(X , Y) + 3|AXY|2. (5)

4. Real and complex projective spaces

We discuss some important as well as interesting prop-
erties for real and complex projective spaces. First, we
give some definitions and propositions, which turn out
to be very important in order to study these projective
spaces in a completely unified way. Second, we prove
that these projective spaces are spaces of constant cur-
vature.

It is well known that the Grassmann manifolds
Gp,q(�) of all p-planes in �p+q, where � is the set of
real numbers, complex numbers or quaternions. As a
special caseG1,q(�) orGp,1(�) is a projective space. For
more details aboutGrassmanniansmanifold,we refer to
[16,21].

4.1. Real projective spaceRPn

Here we determine the sectional curvature for the
real projective spaces, using the properties of it as a
homogenous Riemannian symmetric space.

Definition 4.1: RPn is the set of all 1-D subspaces
through the origin in Rn+1.

Wedefine an equivalence relation ∼ onRn+1\{0} as,
a ∼ b ⇔ a = μb for some μ ∈ R − {0}. The quotient
space (set of all equivalence classes) is precisely RPn.

Since each line through the origin in Rn+1 intersects
the sphere Sn, we can keep under control this relation
to Sn:

a, b ∈ Sn; a ∼ b ⇔ a = μb

for some μ ∈ R with |μ| = 1.

Letπ : Sn → RPn be thequotientmap,which assigns to
a ∈ Sn the line in Rn through a, and let π(a) = [a]. The
inverse imageπ−1([a])of any point [a] ∈ RPn is the two
point set {a,−a}, which is isomorphic to the 0-sphere S0.

Proposition 4.1 ([22]): RPn ∼= Sn/{±1}.

Remark 4.1: Every point in RPn is depicted by two
points in Sn.

Definition 4.2: Let G be a Lie group and K be a closed
subgroup with Lie algebras g and h. A homogeneous
space G/K is called reductive if there exists a comple-
mentary subspacem of h in g that is Ad(K)-invariant i.e.
g = h ⊕ mwith Ad(H)(m) ⊂ m.

Proposition 4.2: The real projective space has constant
sectional curvature with value 1.
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Proof: Consider the real projective space denoted by
G1,q(R) or Gp,1(R). let

X ,N ∈ m

=
{
W =

(
0 A

−At 0

)
;A is p × q real matrix

}

be the orthonormal vectors. Hence the sectional cur-
vature of the plane spanned by X, N, is specified by
Equation (2). If q = 1,

N =

⎛
⎜⎜⎜⎜⎝

a1
.
.
.
aN

⎞
⎟⎟⎟⎟⎠ and X =

⎛
⎜⎜⎜⎜⎝

x1
.
.
.
xN

⎞
⎟⎟⎟⎟⎠

are orthonormal vectors i.e.

g(N,N) = g(X , X) = 1 and g(X ,N) = 0,

thenK(X ,N) = −g(R(N, X)N, X).

Nowwewant toprove thatK(X ,N) is constant. Consider
the inner product

g(A, B) = Re trA Bt . (6)

The curvature tensor R is given by

R(X , Y)Z = XYtZ + ZYtX − YXtZ − ZXtY , (7)

where X, Y, Z are real p × qmatrices.
From Equations (6) and (7) we get

R(N, X)N = 2T(N, X ,N) − T(X ,N,N) − T(N,N, X)

= 2NXtN − XNtN − NNtX ,

where T(X , Y , Z) = XYtZ and asg(X ,N) = 0,g(N,N) = 1,
we obtain

NXtN =

⎛
⎜⎜⎜⎜⎝

a1
.
.
.
ap

⎞
⎟⎟⎟⎟⎠

(
x1 . . . xp

)
⎛
⎜⎜⎜⎜⎝

a1
.
.
.
ap

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

a1
.
.
.
ap

⎞
⎟⎟⎟⎟⎠ (x1a1 + · · · + xpap) = 0,

XNtN =

⎛
⎜⎜⎜⎜⎝

x1
.
.
.
xp

⎞
⎟⎟⎟⎟⎠

(
a1 . . . ap

)
⎛
⎜⎜⎜⎜⎝

a1
.
.
.
ap

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

x1
.
.
.
xp

⎞
⎟⎟⎟⎟⎠ = X ,

NNtX =

⎛
⎜⎜⎜⎜⎝

a1
.
.
.
ap

⎞
⎟⎟⎟⎟⎠

(
a1 . . . ap

)
⎛
⎜⎜⎜⎜⎝

x1
.
.
.
xp

⎞
⎟⎟⎟⎟⎠ = 0,

then R(N, X)N = 0 − X − 0 = −X . It follows that

K(X ,N) = −g(R(N, X)N, X) = 〈X , X〉 = 1.

HenceGp,1(R) is a space of constant curvature, similarly
for G1,q(R). �

4.2. Complex projective spaceCPn

In this section, we determine the sectional curvature
for the complex projective space, using the Riemannian
submersions and O’Neill formula.

Definition 4.3: CPn is the set of 1-D complex–linear
subspaces of Cn+1.

We define an equivalence relation ∼ onCn+1\{0} as
a ∼ b ⇔ a = μb. The quotient space is exactly CPn.

Since each line through the origin in Cn+1 ∼= R2n+2

intersects the sphere S2n+1. We can keep under control
this relation to S2n+1:

a, b ∈ S2n+1; a ∼ b ⇔ a = μb

for some μ ∈ C with |μ| = 1.

Let π : S2n+1 → CPn be the quotient map, which
assigns to a ∈ S2n+1 the complex line in Cn+1 through
a, and let π(a) = [a]. The inverse image π−1([a]) of any
point [a] ∈ CPn is the set {eiθa; θ ∈ [0, 2π ]}, which is
isomorphic to the 1-sphere S1.

Proposition 4.3 ([22]): CPn ∼= S2n+1/S1.

Remark 4.2: Each point in CPn is represented by a
circle in S2n+1.

Proposition 4.4: The complex projective space has sec-
tional curvature lies in interval [1, 4].

Proof: Let us consider the Hopf bundle π : S2n+1 →
CPn and N be the unit normal on the unit sphere
S2n+1 ⊆ R2n+2, then IN is defined the vertical vector
field on S2n+1. Then

AXY = 〈X , IY〉IN, AX(IN) = IX ,

where X and Y are horizontal vectors on S2n+1 and I is
complex structure. Since IN is a unit field spanning the
vertical distribution, hence

|AXY|2 = 〈AXY , IN〉2 = 〈Y ,AX(IN)〉2

= 〈Y , IX〉2 = 〈X , IY〉2. (8)

For theorthonormal vector fieldsX andY, it follows from
Equations (5) and (8) that

K∗(X , Y) = 1 + 3|AXY|2 = 1 + 3〈X , IY〉2.

Thus, the sectional curvature of the complex projective
space CPn lies between 1 and 4. �
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Remark 4.3: The projective spaces RPn and CPn are
compact, Hausdorff, second countable and smooth
manifolds of dimensions n & 2n.

In the next section, we study widely from one of the
most important type of projective spaces, namely the
quaternion projective space.

5. Quaternion projective space

Weprove that thequaternionprojective space is a space
of constant curvature, using the Riemannian submer-
sions and O’Neill formula.

Definition 5.1: The quaternion projective spaceQPn is
the set of all 1-D subspaces through the origin in Qn+1.
It is a compact, smooth 4n-D manifold

Consider the quaternion projective space QPn as
the set of all (unordered) directions in Qn+1. A quater-
nion line is isomorphic to R4, but not all real 4-D
subspaces of Qn+1 are complex lines. We define an
equivalence relation ∼ on Qn+1\{0} by a ∼ b ⇔ a =
μb for someμ 	= 0 inQ. The quotient space is exactly
QPn.

Since each line through 0 in Qn+1 ∼= R4n+4 inter-
sects the sphere S4n+3, we can keep under control this
relation to S4n+3:

a, b ∈ S4n+3; a ∼ b ⇔ a = μb

for some μ ∈ Q with |μ| = 1.

Let π : S4n+3 → QPn be the quotient map (Hopf map),
which assigns to a ∈ S4n+3 the quaternionic line in
Qn+1 through x, and let π(a) = [a]. The inverse image
π−1([a]) of any point [a] ∈ QPn is the set {qa; q ∈
Q, |q| 	= 1}, which is isomorphic to the 1-sphere S3.

Remark 5.1: Each point in QPn is represented by a 3-
sphere in S4n+3.

Definition 5.2 ([23]): Let M be the quaternion projec-
tive space, x ∈ M. For each twounit vectorsX, Y in Tx(M),
define the “angle” function ϕ(X , Y), 0 < ϕ(X , Y) < π

2 as
follows

cos2 ϕ(X , Y) = 〈XI, Y〉2 + 〈XJ, Y〉2 + 〈XK , Y〉2. (9)

ϕ is well defined because it is independent of the
choice of a quaternionic structure I, J, K : I2 = J2 = K2 =
−1 and IJ = K on Tx(M).

Proposition 5.1: The quaternion projective space has
sectional curvature lies in interval [1, 4].

Proof: Let us consider the Hopf bundle π : S4n+3 →
QPn and N be the unit normal on the unit sphere

S4n+3 ⊆ R2n+2, then IN, JN and KN are defined the ver-
tical vector fields on S4n+3. Hence

AXY = −〈IX , Y〉 IN − 〈JX , Y〉 JN − 〈KX , Y〉 KN, (10)

where X, Y are horizontal vector of the Hopf bundle and
I, J, K are complex structure with IJ = K. According to
Equations (5) and (10), we get

K∗(X , Y)

= K(X , Y) + 3|AXY|2

= |X|2|Y|2 − 〈X , Y〉2

+ 3
(〈XI, Y〉2 + 〈XJ, Y〉2 + 〈XK , Y〉2) .

For theorthonormal vector fieldsX andY, it follows from
Equation (9), that

K(X , Y) = 1 + 3 cos2 ϕ(X , Y). (11)

Thus, the sectional curvature K of the quaternion pro-
jective space QPn satisfies 1 ≤ K ≤ 4. �

Definition 5.3: Consider a compact Riemannian man-
ifold (M, g) with positive sectional curvature K. The
pinching constant is defined as follows:

δm = minK(σ )

maxK(σ )
,

where σ runs through all two-planes of TpM and p ∈ M.

This means that the sectional curvatureK obeys

Kmax ≥ K ≥ δmKmax > 0.

Proposition 5.2 ([24]): Let M be a compact, simply con-
nected, Riemannian manifold with its sectional curvature
K satisfying

Kmax ≥ K ≥ 1
4
Kmax,

henceeitherM ishomeomorphic toasphereor isometric to
one of the compact rank one symmetric spacesCPn,QPn.

The pinching constant for the complex projective
space CPn and for the quaternion projective space
QPn is

δCPn = δQPn = 1
4
.

6. Conclusions

The projective spaces are considered in this article.
Specifically, the real, complex and quaternion projec-
tive spaces are introduced. Some interesting observa-
tions and notions of these projective spaces are given.
Indeed, we proved that their sectional curvatures are
constant. The pinching constant for the complex pro-
jective space and for the quaternion projective space is
determined.
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